Multi-orbital Analysis on the Superconductivity in NaxCoO2 yH2O Youichi YANASE, Masahito MOCHIZUKI and Masao OGATA J. Phys. Soc. Jpn. 74 (2005) 430 2006/1/30 Suzuki-Kusakabe group Fumiya Kanetake Contents 1. 2. 3. 4. Introduction - NaxCoO2yH2O vs. High-Tc cuprates - Gap function (order parameter) Theory - Multi-orbital Hubbard model - 2nd order perturbation Green’s function method Calculation Result Summary NaxCoO2yH2O vs. High-Tc cuprates(La2-xSrxCuO4) G. Baskaran Phys.Rev.Lett.91(2003)097003 K. Takada et al , Nature 422 (2003) 53 超伝導 黒木和彦・青木秀夫 NaxCoO2 yH2O(2003) High-Tc cuprates(1986) Structure 2-dimentional triangular CoO2 lattice 2-dimentional square CuO2 lattice Tc (Superconductive transition temperature) ~5[K] (x~0.35, y~1.3) ~40[K] (La2-xSrxCuO4;x~0.15) Main conduction band t2g(dxy,dyz,dzx) (electron) dx2-y2 (hole) Gap function (pair symmetry) p-wave triplet? d-wave singlet? f-wave triplet? dx2-y2-wave singlet (La2-xSrxCuO4) 3 NaxCoO2yH2O vs. La2-xSrxCuO4 eg NaxCoO2 yH2O… NaxCoO2 →(Na1+)xCo(4-x)+(O2-)2 →3d5+x main conduction band: t2g(dxy,dyz,dzx) ( (5+x)/6 electron ) La2-xSrxCuO4 … La2-xSrxCuO4→(La3+)2-x(Sr2+)xCu(2+x)+(O2-)4→3d9-x main conduction band: dx2-y2 ( (1+x)/2 hole ) 3d t2g eg x2-y2 t2g 3z2-r2 xy 3d yz,zx Na1/3CoO2 K.-W. Lee et al, Phys.Rev.B.70(2004)045104 La2CuO4 L.F.Mattheiss Phys.Rev.Lett.58(1987)1028 4 Gap function (order parameter) Gap function indicates Energy gap, Symmetry of superconductivity. s-wave, p-wave, d-wave, f-wave…(from symmetry of lattice) BCS S.C. … s-wave. Gap equation The others …not s-wave. s-wave π/a dx2-y2-wave f1-wave p-wave + + ky -- - + -π/a -π/a kx -- -- - + ++ + + - ++ π/a 5 Motivation They want to decide gap function of NaxCoO2 yH2O because it has not been decided in experiment and theory. It is necessary to consider 3-orbital that is not considered in theory up to now. 6 Single-orbital Hubbard model It suites Electron localized system. ( f.e. d-orbital, f-orbital) parameters ・Hopping energy (kinetic energy) t (t1,t2,t3…) ・On site coulomb energy (potential energy) U t2 t1 t3 7 Multi-orbital Hubbard model NaxCoO2yH2O… main conduction band: t2g (dxy, dyz, dzx)3-orbital ⇒3-orbital Hubbard model Hopping energy tij fits LDA band structure. ky εk kx tayz,zy taxy,xy + - - + + - - + + - - + + - Fitting - + a=0.8 K.-W. Lee et al, Phys.Rev.B.70(2004)045104 8 2nd order perturbation Green’s function method This method considers only 1st and 2nd order Feynman diagrams. V(k,k’) k k’ = -k 2nd 1st + + 3rd + + + + -k’ + + 2nd order perturbation + + + + + + more +… 3rd order perturbation 9 Method of decision of gap function 1. Setting of Parameters (‘a’, U, U’, ne) ‘a’: hopping energy scale, U: on-site intra-orbital coulomb energy, U’: on-site inter-orbital coulomb energy, ne: hole density 2. Calculation of Green’s function 3. Solving gap equation 10 (U’=U/2) Calculation Result Hopping energy scale p-wave and f1-wave is dominant. (a little difference) There is no method of decision of ‘a’. Eigen value (a=0.8) hole density 11 (U’=U/2,a=0.8) Calculation Result 3-orbital effective 2-orbital The rank doesn’t change. Absolute value of λe changes. 12 Calculation Result (ne=0.35, a=0.6, U’=U/3) There is no reversal of p-wave and f1-wave. There is no method of decision of U,U’. → Kusakabe theory (cond-mat/0505703). 13 Summary The calculation results indicates that p-wave or f1-wave gap function is stable. (little difference) There is no method of decision of ‘a’ and U,U’ in this paper. 14
© Copyright 2024 ExpyDoc