2005/2/16~19 4th TAMA symposium & GW winter school @ Osaka-city Univ. TDI 入門 Atsushi TARUYA (RESCEU, Univ. Tokyo, JAPAN) TDI ? ・・・ Time Delay Interferometry Fundamental technique to synthesize data streams free from the laser-frequency noise Key ingredient to detect gravitational-wave signals from space interferometer, LISA Influence on response functions, sensitivity curves and S/N Some implications to data analysis TDI affects sensitivity curves Armstrong et al. (1999) a X z a-b (or a - 2b + g) Goal of this talk From a theoretical view-point, Introduction to signal processing in space interferometer, LISA How to construct noise-canceling combination Influence on signal response and sensitivity Practical application to data analysis Contents Principle of gravitational-wave detection Time-delay interferometry Observational characteristics of TDI signals Development of TDI technique References Review • “Time-Delay Interferometry and LISA’s Sensitivity to Sinusoidal Gravitational Waves”, http://www.srl.caltech.edu/lisa/tdi_wp/LISA_Whitepaper.pdf M.Tinto, F.B.Estabrook & J.W.Armstrong • “Time-Delay Interferometry”, gr-qc/0409034 M.Tinto & S.V.Dhurandhar References Armstrong et al., ApJ 527, 814 (1999) Armstrong et al., CQG 18, 4059 (2001) Cornish & Hellings, CQG 20, 4851 (2003) Cornish & Rubbo, PRD 67, 022001 (2003) Dhurandhar et al., PRD 65, 102002 (2002) Dhurandhar et al., PRD 68, 122001 (2003) Dhurandhar et al., gr-qc/0410093 Estabrook et al., PRD 62, 042002 (2000) Prince et al., PRD 66, 122002 (2002) Shaddock et al., PRD 68, 061303(R) (2003) Shaddock, PRD 69, 022001 (2004) Shaddock et al., PRD 70, 081101(R) (2004) Sheard et al., PLA 320, 9 (2003) Sylvestre & Tinto, PRD 68, 102002 (2003) Sylvestre, PRD 70, 102002 (2004) Tinto et al., PRD 63, 021101(R) (2001) Tinto et al., PRD 67, 122003 (2003) Tinto et al., PRD 69, 082001 (2004) Tinto & Larson, PRD 70, 062002 (2004) Tinto et al., gr-qc/0410122 Vallisneri, PRD 71, 022001 (2005) Principle of gravitational-wave detection LISA mission Laser Interferometer Space Antenna • Project on NASA, ESA • Schedule: 2008 LPF mission (test flight) 2013~ Launched • Science goal: Low-frequency gravitational-wave sources strain ~ 10-20 Hz -1/ 2 @ 1 mHz ~ 10 mHz Galactic binaries : resolved, un-resolved BH-BH coalescence, etc. LISA & gravitational-wave sources –16 10 Strain [1/Hz 1/2 ] –18 大質量 ブラックホール連星合体 LISA 10 中性子星 連星合体 重力崩壊型 超新星爆発 銀河系内連星 –20 10 銀河系内連星 バックグラウンド雑音 –22 10 初期宇宙 からの重力波 (Wgw=10-14) ScoX-1 (1yr) パルサー (1yr) LCGT –24 10 DECIGO (量子限界) –26 重力場変動雑音 (地上検出器) 基線長 108 m, マス 100kg, レーザー光 10MW, テレスコープ径 3m 10 –5 10 –4 10 –3 10 –2 –1 0 1 10 10 10 10 Frequency [Hz] 2 10 3 10 4 10 Viewgraph by M. Ando (GW school 2004) Flight configuration Arm-length: 5,000,000 km (16.7 light sec) 3 spacecrafts with 6 laser-path (drag-free) Circular orbit: P = 1 year e = 0.01 a = 1 AU Cartwheel motion Sun 60 deg. Optical design Optical bench (35cm×20cm×4cm) Laser 1W, Nd:YAG, 1.064 mm Proof mass 40 mm,3 Au:Pt = 9:1 (drag-free sensor) Photodetector 18 independent data streams : interspace(6) + intraspace(6) + USO(6) Basic concept of LISA detector Combining 4 data streams out of the 6 interspace signals, LISA can be viewed as a large “Michelson interferometer”: “Phase-locked laser beam ” Michelson(a) is transferred back and forth via c Lbc Lca “Heterodyne detection” a Lab b But, actual implementation in space is very different from ground detector, especially by using TDI technique. Basic principle of signal detection (1) Arm-length variation caused by gravitational waves phase difference of laser-light : (t ' ) 2 ( 0 / c) l (t ) gravitational wave s/c1 laser emit: t s/c2 receive: t’ l l + l (t ) (t ' ) 0 3 1014 Hz (laser frequency) Basic principle of signal detection (2) Alternatively, Arrival-time is delayed or advanced in presence of gravitational wave Doppler effect (t ' ) d t ' d Frequency shift of laser-light : 0 dt ' t Relation between frequency-shift and phase difference: (t ' ) (t ' ) 0 2 0 These are both connected with path-length variation caused by gravitational waves. Path-length variation (Analytic formula) Cornish & Rubbo, PRD 022001 (2003) Gravitational wave ˆ W h emit: ti Laser s/c i ˆ (t ) t - W xi (t ) f ij* [2 lij (ti )]-1 Response function receive: tj rˆij (t ), lij (t ) : Unit vector and arm-length s/c j pointing from s/c i to s/c j at a time t j ˆ ˆ r ( t ) r ( t ) 1 ij i ij i lij (ti ) : d h ( ) ˆ 2 1 - W rˆ (t ) ij i i ~ ˆ lij (ti ) df dW D( f , ti , W) : h ( f ) ei 2 f (ti ) f i 2 f ij [1-Wˆ rˆij (ti )] 1 ˆ ) [rˆ (t ) rˆ (t )] sinc ˆ rˆ (t )] e D( f , t i , W [1 - W ij i ij i ij i 2f 2 ij f Noise contributions Output signal of one-way Doppler tracking : Gravitational-wave signal ij (t j ) 20 lij (ti ) accel accel shot + n +rˆij (ti ) n j (t j ) - ni (ti ) ij (t j ) + Ci (ti ) - C j (t j ) Contributions of instrumental noises: Acceleration noise : Random forces exerted on each spacecraft Shot noise : Laser-phase noise : Photon number fluctuation in laser-beam Stability of laser-beam Total noise budget Strain amplitude From 「Pre-Phase A report」, Acceleration noise (proof-mass noise) Shot noise (optical-path noise) Laser frequency noise ~ | | | C | / f ( l / l ) 2 1/ 2 3 10 -15 2 m / s Hz -1/ 2 1.5 10 30 Hz Hz Significantly large !! f mHz 4 10 -21 2 10-11 m Hz -1/ 2 -1/ 2 - 20 [Hz -1/ 2 ] 10 -12 f mHz -1 -2 Impact of laser-frequency noise (unit: c=1) Michelson signal (static configuration): Michelson(a) c Michelson ( t ) ab ( t - Lab ) + ba ( t ) a - ac ( t - Lca ) - ca ( t ) Lbc Lca a Lab Contribution of laser-frequency noise: Michelson freq ( t ) Ca ( t - 2Lab ) - Cb ( t - Lab ) + Cb ( t - Lab ) - Ca (t ) - Ca ( t - 2Lca ) - Cc ( t - Lca ) - Cc ( t - Lca ) - Ca (t ) Ca ( t - 2Lab ) - Ca ( t - 2Lca ) 0 if Lab Lca b Required accuracy Michelson freq Ca ( t - 2Lab ) - Ca ( t - 2Lca ) Residual noise: 2 C a ( t - Lab ) L Fourier domain ~ ~ Michelson | freq ( f ) | 4 f | Ca ( f ) | L f -1 | | Strain amplitude : ~Michelson Lfreq L L Lab - Lca 2 L L 2.2 10 -13 [Hz -1/ 2 ] 0 L L To achieve the required sensitivity (~ 10-20 Hz -1/ 2 ) , arm-length difference must be suppressed as L / L 10-7 Unequal armlength of LISA 5.1 L23 L31 5.08 6 [10 km] 5.06 L12 5.04 5.02 5.0 4.98 0 0.5 1 year Dhurandhar et al. gr-qc/0410093 For actual flight configuration of LISA, L / L 10-7 is impossible !! Brief summary LISA measures the graviational-wave signal through the phase measurement in optical bench of each spacecraft. 6 independent signals ij (t j ) lij (ti ) ~ i 2f ( t ) ˆ df d W D ( f , t , W ) : h ( f ) e i 20 c i f i 2 f ij [1-Wˆ rˆij (ti )] 1 ˆ rˆ (t )] e [rˆij (ti ) rˆij (ti )] sinc [1 - W ij i 2f 2 ij f Noise contributions to the phase measurement Laser-frequency (phase) noise is 3~5 order of magnitude larger than the GW signals. Time-delay interferometry ~ 1st generation TDI ~ Confronting laser-frequency noise Possible approach Reduction of laser-freq. noise : Improving laser-frequency stability by introducing new technique Sheard et al. (2003); Sylvestre (2004) Cancellation of laser-freq. noise • Frequency-domain cancellation • Time-domain cancellation TDI TDI ~ basic idea ~ Simple Michelson signal uses only 4 data : ab ( t - Lab ), ba ( t ), ac ( t - Lca ), ca ( t ) LISA provides 6 insterspace data, each of which is (continuous) time-series data c Construct a noise-free signal using all possible combinations of time-delayed data : aij ij ( t - lij Lab - mij Lbc - nij Lca ) Lbc Lca i, j (i, j =a, b, c) integer a Lab b X signal (1) ~ heuristic derivation ~ Michelson(a) Consider again the Michelson signal: c ac Michelson ( t ) a b ( t ) - a c ( t ) ; a Lbc Lca ab (t ) ab (t - Lab ) + ba ( t ) ac (t ) ac ( t - Lca ) + ca ( t ) a Lab b ab Noise contribution: freq a b (t ) Ca (t - 2 Lab ) - Ca ( t ) Non-vanishing noise contribution appears at end-point. freq a c (t ) Ca ( t - 2 Lca ) - Ca ( t ) survive cancel X signal (2) ~ heuristic derivation ~ cancel Consider the following path: ac (t - 2Lab ) - a b (t - 2Lca ) Laser-freq. noise Ca ( t - 2Lab - 2Lca ) - Ca ( t - 2Lab ) Ca (t - 2Lab - 2Lca ) - Ca ( t - 2Lca ) non-vanishing, but same as the residual of Michelson Xa ( t ) a b ( t ) - a c ( t ) c X + a c ( t - 2Lab ) - a b ( t - 2Lca ) Lca Lbc laser-frequency noise cancelled !! a “X signal”, or “unequal-arm Michelson” Lab b Sagnac signal Recall that residual laser-freq. noise appears at end-points of path: aSagnac ( t ) acba ( t ) - abca ( t ) ; acba (t ) ac (t - Lab - Lbc ) + cb ( t - Lab ) + ba ( t ) abca (t ) ab ( t - Lbc - Lca ) + bc ( t - Lca ) + ca ( t ) Noise contribution: cancel !! a c freq a c ba (t ) Ca (t - Lab - Lbc - Lca ) - Ca (t ) freq a b c a Lca (t ) Ca ( t - Lbc - Lca - Lab ) - Ca (t ) “Sagnac signal” (a-type) a Lbc Lab b Fully symmetric Sagnac + a ,bc (t ) b,ca (t ) c ,ab (t ) c c c Lbc Lca a Lab ‐ b Ca ( t - Lac ) - Cb ( t - Lbc ) ‐ Lca a Lbc Lab + b Cb ( t - Lab ) - Cc ( t - Lca ) Lca a Lbc Lab ‐ + b Cc ( t - Lbc ) - Ca ( t - Lab ) Noise-canceling combination: z (t ) a,bc ( t - Lab ) + b,ca ( t - Lbc ) + c,ab ( t - Lca ) “Fully symmetric Sagnac” ( z ) Family of TDI signals ~ summary ~ 6-pulse combination Sagnac ( a, b, g ) Symmetric Sagnac ( z ) 8-pulse combination Unequal-arm Michelson ( X, Y, Z ) Beacon ( P, Q, R ) Monitor ( E, F, G ) Relay ( U, V, W ) Armstrong et al.(1999), Estabrook et al.(2000) Algebraic relationship All the TDI variables presented above are related with each other and can be expressed in terms of the Sagnac signals : (Armstrong et al. 1999) z - z ,123 a ,1 - a , 23 + b, 2 - b,31 + g ,3 - g ,12 X ,1 a ,32 - b , 2 - g ,3 + z E a - z ,1 shortcut notation U g ,1 - b X ,ij X (t - ti - t j ) (i, j = 1,2,3) P z - a ,1 where ( t1 , t2 , t3 ) ( Lbc , Lab , Lca ) Mathematical background (1) Dhurandhar et al. (2002) There are fundamental set of TDI signals, which generate all the other combinations canceling the laser-frequency noise. Delay operator Ek : Ek f (t ) f (t - tk ) ( t1 , t2 , t3 ) ( Lbc , Lab , Lca ) General form of signal combination : (t ) pij ( E1 , E2 , E3 ) ij (t ) i, j freq (i, j =a, b, c) ij (t ) mn ({Ei }) pij ( E1 , E2 , E3 ) Cn (t ) n a ,b , c i , j given function Noise-canceling condition : ij m n ({Ei }) pij ( E1 , E2 , E3 ) 0 i, j Mathematical background (2) Recalling that delay operator Ek forms a ring of polynomial, Noise-canceling condition forms 1st module of syzygies. Generator of module of syzygies Fundamental set of TDI signals Computational commutative algebra Sagnac signals ( a, b, g, z ) can be regarded as a fundamental set of TDI. For details, → next talk by Prof. Dhurandhar. Extension (1) ~ practical setting ~ Estabrook et al. (2000) Practical setting envisaged for LISA : Additional noises: Optical-bench motion noise, Optical-fiber noise Additional signals: Intra-spacecraft data communicating with adjacent optical bench s/c 2 s/c 3 Further, lasers are not necessarily locked. Extension (2) ~ noise contribution ~ 4 phase measurements in each spacecraft: Inter-s/c data Intra-s/c data GW s31 (t ) s31 (t ) + [ p13 - 13 ], 2 - [ p31 + 31 ] + 2 31 + n31 GW s21 (t ) s21 (t ) + [ p12 + 12 ],3 - [ p21 - 21 ] + 2 21 + n21 21 (t ) p31 - p21 + 231 + 2 31 + m1 31 (t ) p21 - p31 + 2 21 + 2 21 + m1 s/c 2 pij : laser-phase noise ij : optical-bench motion noise ij : proof-mass noise mi : optical-fiber noise No GW signals s/c 3 Extension (3) ~ canceling s/c motion ~ Defining new signals combination with intra-s/c and inter-s/c data : Noise function including Optical-bench motion noise Laser-frequency noise The same TDI combinations as presented previously can be applicable, eliminating both optical-bench motion and laser-frequency noises. note Acceleration and shot noises still remain non-vanishing. Brief summary unequal-armlength 1st generation TDI variables : static configuration Sagnac ( a, b, g ) + Symmetric Sagnac ( z ) Sagnac a Unequal-arm Michelson ( X, Y, Z ) Mathematical background : Systematic method to derive TDI with a help of computational commutative algebra Extention for practical setting : c Lca a Lbc Lab Xa ( t ) c Lca a Canceling s/c motion effects without any recourse of previous TDI combination. b Lbc Lab b Observational characteristics of TDI signals Sensitivity curves Depending on the signal combinations, Response to the GW signals changes significantly. noise contribution sensitivity curves Roughly, (noise spectrum) 1/2 [Hz RMS of response function ‐1/2 ] Strain amplitude (1) phase : (t ) GW (t ) + noise(t ) strain : h(t , xk ) s(t) = h(t) + 1 2 0 L n(t) ~ ˆ x ) i 2 f ( t W A k df dWˆ D( f , Wˆ ) :e (Wˆ ) hA ( f , Wˆ ) e A + , Combination of one-way Doppler signal multiplied by the phase factor: f ˆ f ˆ rˆ ] -i W rˆik i [1- W ij 1 f f ik 2 f ij ˆ ˆ ˆ D i j ( f , W) e ; Di j ( f , W) [rˆij rˆij ] sinc [1 - W rˆij ] e 2f 2 ij Strain amplitude (2) phase : (t ) GW (t ) + noise(t ) strain : s(t) = n(t ) df n~( f ) ei 2 f t h(t) + 1 2 0 L n(t) Sum of noise terms associated with combination of one-way Doppler tracking - i 2 f Lij proof opt ~ ~ ~ n ( f ) [nij ( f ) + nij ( f )] e + Non-vanishing contribution (secondary noise) is proof-mass and optical-path noises. Statistical averaging s 2 (t ) h 2 (t ) + n 2 (t ) 2 ˆ ˆ ~ ~ ˆ )h * ( f ' , W ˆ ' ) ( f - f ' ) (W, W' ) S ( f ) hA ( f , W A' AA' h 4 n~ijproof ( f )n~kl*proof ( f ' ) ( f - f ' ) ik jl S proof ( f ) n~ijopt ( f )n~kl*opt ( f ' ) ( f - f ' ) ik jl Sopt ( f ) h (t ) df S h ( f ) R 2 * ˆ A d W ˆ ( f ) ; R ( f ) [D( f , W) :e ][D ( f , Wˆ ) :e A ] A 4 n 2 (t ) df [ A ( f ) S proof ( f ) + B ( f ) Sopt ( f )] df S n ( f ) Strain sensitivity Time-domain S/N=1 2 2 h (t ) S 2 n (t ) N Fourier-domain heff ( f ) S h ( f ) 1/ 2 2 Sh ( f ) R ( f ) S (f) Sn ( f ) N Sn ( f ) [Hz -1/ 2 ] R (f) Note ―. • Both R ( f ) and Sn ( f ) depend on signal combination. • In S n ( f ) , main contributions are optical-path and proof-mass noises. -2 -1 L f 1/2 1/2 -1 / 2 Sopt ( f ) 4 10-21 [Hz -1/ 2 ] , S proof ( f ) 1.5 10 - 20 [ Hz ] 6 mHz 5 10 km Sensitivity curve for X-signal (1) Equal armlength case ( Lab Lbc Lca ) Noise spectrum ( f* c 2 L 10 mHz ) SnX ( f ) 4 sin 2 ( f / f* ) 4 Sopt ( f ) + 8 1 + cos 2 ( f / f* ) Sproof ( f ) f 2 Sproof f -2 ( f f* ) Sopt f 0 ( f f* ) Detector response R ( f ) R ( f / f* ) f2 ( f f* ) f -2 ( f f* ) Sensitivity curve for X-signal (2) f* c 2 L 10 mHz X-signal = Michelson f* heff ( f ) Sn ( f ) R (f) f -2 f 1 ( f f* ) ( f f* ) Sensitive curves for Sagnac signals (1) Sagnac ( a, b, g ) Behaviors at low-/high-frequency are qualitatively the same as X-signal. Symmetric Sagnac ( z ) Detector response is insensitive to the low-frequency GW. R ( f ) ~ f 4 ( f f* ) Instrumental noise is dominant at low-frequency regime. Sensitive curves for Sagnac signals (2) 1/2 (25/T) h eff f f -3 -2 T= 1 year z a, b, g Armstrong et al. (2001) z-signal may be useful for real-time monitoring of instrumental noise. (Tinto et al. 2000; Sylvestre & Tinto 2003) Optimization of TDI signal Combining fundamental TDI set ( a, b, g ), signals optimized for proper observation can be constructed: ~ ~ ~ ( f ) a1 ( f , ) a ( f ) + a2 ( f , ) b ( f ) + a3 ( f , ) g ( f ) : optimazation parameters Optimal TDI signals free from the noise correlation Prince et al. (2002) Optimizing SNR for known binaries with unknown polarization Nayak, Dhurandhar, Pi & Vinet (2003) Zero-signal solution that has zero response to GW signal Tinto & Larson (2004) Uncorrelated-noise combination (1) Prince et al. (2002) Orthogonal modes with uncorrelated noise : A 1 g - a 2 E 1 a - 2 b + g 6 1 a + b + g T 3 A, E, T can be regarded as “independent” signals. Particularly useful for study of stochastic GW background Uncorrelated-noise combination (2) Prince et al. (2002) f -3 f -2 A, E X T Zero-signal solution (1) Tinto & Larson (2004) Sky pattern of detector’s response depends on both the signal combination and geometry of detector configuration Zero response to GW at a particular direction (s , s ) : ~ ~ ~ ( f ) a1 ( f , ) a ( f ) + a2 ( f , ) b ( f ) + a3 ( f , ) g ( f ) = 0 × × f = 10 mHz Source position : ( s , s ) ( 32 , 107 ) Zero-signal solution (2) Tinto & Larson (2004) (31.5 ,106.5 ) (s , s ) Slightly mismatching Perfect matching ZSS technique may be useful for accurate determination of source location. Brief summary Sensitivity to GW and noise contributions depend on signal combination of TDI. Most of TDI signals : heff ( f ) Sn ( f ) R (f) f -2 f 1 ( f f* ) ( f f* ) Symmetric combination such as “z” can change low-freq. behavior. Optimization of signal combination : Uncorrelated-noise combination ( A, E, T ) Zero-signal solution Development of TDI Evolution of TDI technique For practical implementation for LISA, static configuration that has been assumed so far is invalid : Orbital motion (Sagnac effect) Flexing motion Modification/improvement of 1st generation TDI : Modified TDI, 2nd generation TDI Orbital motion (Sagnac effect) Cornish & Hellings (2003) Shaddock (2004) Violation of direction symmetry due to cartwheel motion: L L12 + L23 + L31 - ( L13 + L32 + L21 ) 4W A 14.4 km c Imperfect cancellation of laser-frequency noise : ~ Lfreq L dominate the secondary noises !! L -13 L 2 2.2 10 [Hz -1/ 2 ] ~ 10-18 [Hz -1/ 2 ] 0 L L This effect particularly affects the Sagnac-type TDI signal. Flexing effect Cornish & Hellings (2003) Shaddock et al. (2004) In reality, armlengh between s/c varies in time : Lij (t + ) Lij (t ) Lij (t ) 3 - 15 m s -1 ~ L2 /(TaE ) Time-delay operation does not commute: Pre-Phase A report [t - Lab (t ) - Lbc (t - Lab )] [t - Lbc (t ) - Lab (t - Lbc )] Imperfect cancellation of laser-freq. noise This effect affects both Sagnac and unequal-arm Michelson signals. 2nd generation TDI Shaddock et al. (2004) Tinto et al. (2004) Modification of 1st generation TDI to account for orbital-motion and flexing effects. Generalized X-signal Generalized Sagnac-signal s/c b s/c c s/c c s/c b s/c a X1 s/c a a1 Outcome of 2nd generation TDI Shaddock et al. (2004) Tinto et al. (2004) For orbital-motion effect, exact cancellation of laser-frequency noise becomes possible. For flexing effect, first order correction in non-commutative time-delay operation: L L (t - L (t ) - L (t - L (t ) )) + ;i j j i j ,i j ,i j i j can be cancelled for X-signal, however, residual frequency noise remains for Sagnac signals. Residual noise contribution ( f / f )2 S ( f ) * Even if the exact cancellation is impossible, residual laser-frequency noise in 2nd generation TDI is now well below the secondary noises. Simulated by synthetic LISA (Vallisneri 2004) Requirement of TDI technique Tinto, Shaddock, Sylvestre & Armstrong (2003) Further practical issues to implement TDI for LISA : Accurate armlength determination ~30 m (~100 ns) Synchronization of clocks onboard the 3 spacecrafts Timing accuracy / sampling rate Data digitization with high dynamic range ~50 ns 100 ns / 10 MHz ~36 bits Numerical values are estimated in the case of 1st generation TDI. Post-processed TDI Shaddock et al. (2004) Instead of real-time signal processing, TDI signal is constructed at the Earth as postprocessing. With Implementing TDI as post-processing, • Phase measurement data with arbitrary timing accuracy can be reconstructed by interpolating a low-sampled data ( ~10Hz ). Shaddock et al. (2004) • Accurate determination of armlength ( L ~ 3-5m ) (as well as clock-synchronization) can be achieved by the new variational procedure called “TDI ranging”. Tinto, Vallisneri & Armstrong (2004) Summary 最後は日本語でおさらい TDI って何だったっけ? LISAで実装される予定の周波数雑音キャンセル法 6つのデータを組み合わせて、シグナルを構成 ( X, Y, Z ), ( a, b, g, z ), ... それって重要? 重力波応答へ影響します(→ 感度曲線) 組み合わせで、重力波応答、あるいは雑音特性を最適化 ( A, E, T ), ゼロシグナル解 おさらい(続き) 懸案事項 TDI 法の実装可能性 ・ 残された技術的課題 TDI シグナルを使ってデータ解析する際の影響 DECIGO でも TDI を使うべきか? Appendix Noise spectra ~ analytic expressions ~ Equal armlength case ( Lab Lbc Lca ) ( ) f c fˆ ; f* f* 2 L SnX ( f ) 4 sin 2 fˆ 4 Sopt ( f ) + 8 1 + cos 2 fˆ Sproof ( f ) 4 sin 2 fˆ SnMichelson ( f ) ( ) ( f ) + 24 sin ( fˆ / 2)S ( ) Sna ( f ) 6 Sopt ( f ) + 8 sin 2 3 fˆ / 2 + 2 sin 2 fˆ / 2 Sproof ( f ) Snz ( f ) 6 Sopt 2 proof (f) SnA ( f ) SnE ( f ) 8 sin 2 ( fˆ / 2) ( 2 + cos 2 fˆ ) Sopt ( f ) + 2 ( 3 + 2 cos fˆ + cos 2 fˆ ) S SnT ( f ) 2 (1 + cos fˆ ) 2 Sopt ( f ) + 4 sin 2 ( fˆ / 2) Sproof ( f ) proof (f) Response function ~ analytic expressions ~ Equal armlength case ( Lab Lbc Lca ) X-signal 1 4 Sagnac-signal a 1/2 (5/T) h eff Sensitivity curves ~ other signals ~ Tinto et al. (LISA white paper) Explicit expression for X 1 Tinto et al. (2004) 2 L3 ' L1 ' L1 L3 L2 1 L2 ' 3 Explicit expression for a 1 Shaddock et al. (2004) Roughly, a1 (t ) a (t ) - a ( t - L1 - L2 - L3 )
© Copyright 2025 ExpyDoc