Mathematica (2) 3次元曲線・曲面のパラメータ表示 ParametricPlot3D[{Sin[t],Cos[t],t/3},{t,0,4Pi}]; ParametricPlot3D[{v Sin[u],v Cos[u],u/3}, {u,0,4Pi},{v,-1,1}]; ParametricPlot3D[{Cos[u]Cos[v], Cos[u]Sin[v], Sin[u]}, {u,-Pi/2,Pi},{v,0,2Pi}]; ParametricPlot3D[{Sin[v](3+Cos[u]), Cos[v](3+Cos[u]),Sin[u]},{u,0,2Pi},{v,0,2Pi}]; 式の展開・因数分解・簡単化 In:[1]= Out[1]= In:[2]= Out[2]= In:[3]= Out[3]= In:[4]= Expand[(b+a x)^2] b2 + 2abx + a2x2 Factor[%] (b + ax)2 Factor[x^6 - 1] (-1+x)(1+x)(1-x+x2)(1+x+x2) y = 1/(1+x) + 1/(1-x) 1 1 Out[4]= 1 x 1 x In:[5]= Simplify[y] Out[5]= -2/(-1+x2) 展開 因数分解 簡単化 方程式を解く: Solve[], NSolve[] In:[1]= Out[1]= In:[2]= Out[2]= In:[3]= Out[3]= Solve[x^2 - 2x - 4 ==0, x] {{x 1 5},{x 1 5}} N[%] {{x 1.23607}, {x 3.23607}} NSolve[x^2 - 2x - 4 ==0, x] {{x 1.23607}, {x 3.23607}} 4次方程式までは必ず解ける。 5次以上は(普通は)Solve[]では解けないが、 NSolve[] で数値的に解くことは可能。 連立方程式 In:[1]= Solve[{2x+3y==0,x-2y+3==0},{x,y}] Out[1]= {{x 9 / 7, y 6 / 7}} In:[2]= Solve[{2x+3y==0,x^2+y^2==1},{x,y}] 3 2 3 2 ,y }, {x ,y }} Out[2]= {{x 13 13 13 13 In:[3]= Solve[{a x+b y==0,x^2+y^2==r^2},{x,y}] Out[3]= {{x br ,y ar }, a2 b2 a2 b2 br ar {x ,y }} a 2 b2 a 2 b2 数値解を探す:FindRoot[] In:[1]= In:[2]= Out[2]= In:[3]= Out[4]= Plot[{Exp[-x],Sin[x]},{x,0,8}]; FindRoot[Exp[-x]==Sin[x],{x,0}] {{x → 0.588533}} FindRoot[Exp[-x]==Sin[x],{x,3}] {{x → 3.09636}} 最小値を探す: FindMinimum[] In:[1]= Plot[Sin[x]/x,{x,0,Pi}]; In:[2]= FindMinimum[Sin[x]/x,{x,5}] Out[2]= {-0.217234,{x → 4.49341}} 微分: D[f,x] In:[1]= Out[1]= In:[2]= Out[2]= In:[3]= Out[3]= In:[4]= Out[4]= In:[5]= Out[5]= D[x^2 - x - 6, x] -1 + 2x D[x^n,x] nx-1+n D[Cos[a x], x] -a Sin[a x] D[Cos[a x], {x,2}] -a2 Cos[a x] D[Cos[x^2 y], x,y] -2x3y Cos[x2y]-2x Sin[x2y] 積分: Integrate[] In:[1]= Integrate[x^n, x] x 1 n Out[1]= 1 n In:[2]= Integrate[Sqrt[x^2+a],x] Out[2]= In:[3]= In:[4]= In:[5]= 1 1 2 x a x aLog x a x 2 2 2 Integrage[Sin[a x], {x,0,Pi}] Ingegrate[Sin[Sin[x]],x] NIntegrate[Sin[Sin[x]],{x,0,Pi}] 級数:Sum[] 極限:Lim[] In:[1]= Out[1]= In:[2]= Out[2]= In:[3]= Out[3]= Sum[x^n/n!,{n,0,5}] 1+x+…(略) NSum[1/n,{n,1,100}] 5.18738 Sum[x^n,{n,0,Infinity}] 1/(1-x) In:[1]= Out[1]= In:[2]= Out[2]= Limit[Sin[x]/x,x->0] 1 Limit[(3x^2-1)/(x^2+5),x->Infinity] 3 Taylor展開: Series[] Series[f[x],{x,x0,n}] In:[1]= Series[Sin[x],{x,0,5}] x3 x5 O[ x ]6 Out[1]= x 6 120 In:[2]= Series[Exp[-ax]/Cos[x],{x,0,4}] 1 a2 2 a a3 3 4 Out[2]= 1 ax x x O[ x ] 2 2 2 6
© Copyright 2024 ExpyDoc