June 27- July 1, 2005 Trieste, Italy Numerical study on ESR of V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Nanoscale molecular magnet V15 K6 V As6O42 H2O8H2O IV 15 [A. Mueller and J. Doering (1988)] Vanadiums provide fifteen 1/2 spins. (http://lab-neel.grenoble.cnrs.fr/) Hamiltonian and Intensity H J ij Si S j Dij Si S j HS S i, j i, j ,T 1 e IT Re z i i 0 I,T d 0 0 M M t e x H 2 2 R x it dt ,T d The parameter set [H. De Raedt, et al., PRB 70 (2004) 064401] [M. Machida, et al., JPSJ (2005) suppl.] J 800K, J1 225K, J2 350K D D D 40K x 1,2 y 1,2 z 1,2 Difficulty M M t x x T re M M t H T re H x x difficult! 2 O N – Direct diagonalization requires memory of 3 – Its computation time is of ON (e.g. S. Miyashita et al. (1999)) Two numerical methods • The double Chebyshev expansion method (DCEM) - speed and memory of O(N) - all states and all temperatures • The subspace iteration method (SIM) - ESR at low temperatures. DCEM ESR absorption curves DCEM Typical calculation time for one absorption curve is about half a day. Background of DCEM The DCEM = a slight modification of the Boltzmann-weighted time-dependent method (BWTDM). [T. Iitaka and T. Ebisuzaki, PRL (2003)] Making use of the random vector technique and the Chebyshev polynomial expansion DCEM (1) M M t x x e Random phase vector Xˆ n H / 2 x x H / 2 e M M t e e H / 2 N n e av H / 2 T r Xˆ Xˆ T r Xˆ av i n n1 i m n ˆ n X n e mn m,n av n Xˆ m av DCEM (2) Chebyshev expansions of the thermal and time-evolution operators. H / 2 e kmax I0 2 T0 H 2 Ik 2 Tk H k1 i Ht e kmax J0 t T0 H 2 i Jk t Tk H k k1 J >> HS small Temperature dependence of intensity Itot 0 I, d Our calculation Experiment [Y.Ajiro et al. (2003)] SIM ESR at low temperatures by SIM I T H R2 0 2 ,T ,T d e E m e E m e E n M n x m 2 m,n m E n E m We consider the lowest eight levels. I1T H R2 HS 8 HS tanh 2 Intensity ratio RT I T /I1T Temperature dependence of R(T) With DM Without DM Triangle model analysis J12 J23 J31 J 2.5K D D D D 0.25K x 1,2 y 1,2 z 1,2 Energy levels with weak DM OD E 8 43 J 32 HS E 7 43 J 12 HS E 6 43 J 12 HS 3 H J 2 c0 S E 5 43 J 32 HS E4 J HS E3 J HS 3 2 3 2 D D E2 43 J 12 HS 3 2 D E1 43 J 12 HS 3 2 D 3 4 3 4 1 2 1 2 E5 E2 E1 Intensity ratio of triangle model Rtri T T 0 3D 1 HS HS H 3 H HS c0 S c0 S At zero temperature Summary O(N) algorithms for the Kubo formula DCEM ■ Random vector and Chebyshev polynomials ESR of V15 ■ High to low temperatures by DCEM ■ Ultra-cold temperature by SIM ■ Triangle model analysis M. Machida, T. Iitaka, and S. Miyashita, JPSJ (2005) suppl. (cond-mat/0501439)
© Copyright 2024 ExpyDoc