Recent Topics on Observational Cosmology Naoshi Sugiyama Division of Theoretical Astrophysics National Astronomical Observatory, Japan 1. Introduction 2. Cosmological Parameters 3. Dark Matter 4. Structure Formation 5. Success of -CDM §1.Introduction -Observational CosmologyObserve the features of the present and past Universe •Contents baryon, electron, photon, neutrino dark matter = unknown particles?, MACHO? •Cosmological Parameter , H0, q0, , age dynamics •Structure galaxies, cluster of galaxies, Large Scale Structure Cosmic Microwave Background Extrapolate to the early Universe & future Universe •How was the Universe formed? •What is the final fate of the Universe? From the beginning to the end of the Universe based on observations §2.Cosmological Parameters (1)Hubble Constant H0 Observations by HST key project must determine distance to measure H0 Cepheid Variables by HST calibrate 0-point of various methods < 25Mpc, 27gal (1) Tully-Fisher relation for spiral galaxies rotational vel. v vs absolute luminosity L v = 220(L/L*)0.22 km/s line width W Sakai et al. astro-ph/ 9909269 (2) Fundamental plane of elliptical galaxies velocity dispersion , radius r, surface brightness I r 1.33 i -0.83 Oegerle & Hoessel 91 (3) Super Nova(SN) light curve shape vs abs. luminosity (4) Surface Brightness Fluctuations flux: I=Nf (N: # of stars, f: flux of a star) fluctuation: =N1/2f 2/I=f L/d (L:luminosity, d:distance) Combine (Mould ApJ. 529 (00)786) Riess, Press, Kirshner ApJ.473(96)88 Cephaid distance HST Key Project Ferrarese et al. astro-ph /9909134 Tully-Fisher: red, SNIa: green, SBF: blue, Fundamental plane: cyan Ferrares et al. astro-ph/9909134 H 0 72 8km/s/Mpc Freedman et al. ApJ, astro-ph/0012376 The biggest uncertainty is from distance to LMC => determine the 0 point of Cepheide They assume dLMC=50±3kpc Other estimator of Cepheid 0 point NGC 4258 7.2±0.3Mpc: orbital motion of disk Herrnstein et al. Nature 400, 539 (99) 8.1±0.4Mpc: Cepheid Maoz et al. Nature 401, 351 (99) => Cepheid has 12% error? dLMC=44kpc? H0=80km/s/Mpc? The devil is in the distance ©Bohdan Paczynski (2)Cosmic Age t0 Cosmic Age Crisis? t0=2/3H0=8.1(0.8/h)Gyr. for M =1, =0 =1/H0=12(0.8/h)Gyr. for M =0 , =0 H0=100h[km/s/Mpc] •measurement of cosmic age HR diagram of Globular Cluster t0 > tGC = 11 ±1.0±1.4Gyr Cassisi et al. A&AS134(1999)103 = 13 ±2Gyr Chaboyer, talk given in Feb. 2001 high metal low metal Cutoff in White Dwarf Luminosity Function t0 > tdisk = 10.5 (+2.5-1.5) Oswalt et al. Nature382(1996)692 Universe must be almost empty or dominated by cosmological constant (3)Cosmological Constant High z Super Novae Ia Search d L (1 z )[ z (1 q0 ) z 2 ] / H 0 q0 M / 2 q0 : deceleration parameter luminosity distance If we measure the distance to high z objects, we can determine q0 or /3H02 Perlmutter et al. ApJ.517 (99) 565 42 galaxies 0.18<z<0.83 0.8M 0.6 0.2 0.1 Two Loopholes: •evolution of SN Ia Are SNe at z~1 same as at z=0? •Extinction by dust light from SN may suffer significant damping by interstellar dust Cosmology and these systematic can be distinguished if once we see SNe at z>1 Riess et al. astro-ph/0104455 Discovory of SNIa at z~1.7 SN 1997ff: photometrical redshift of SN, z=1.70.1 Gal, z=1.650.15 M 1/3 2/3 SNAP(Supernova/Acceleration Probe) 2000 SNe/yr. 3yr. 0.1<z<1.7 (4)Curvature of the Universe K MK=1 (Friedmann eq.) K-K/(a0 H0)2 CMB anisotropies Measure the Last Scattering Surface (LSS) (z=1000) Projection from size on LSS to angle •Observable quantites: Cl angular power spectrum l: multipole 1/ •Peak location of Cl : corresponds to sound horizon Flat Universe Open Universe 三角形の内角の和180度 Last Scattering 内角の和<180度 Observer Observer Closed Universe 内角の和>180度 l1/ Observer Peak shifts to larger l (open) smaller l (closed) Large Scale Small scale Not only curvature BUT also • Bh2 • Mh2 • n (initial power law index) • T/S (tensor perturbation contribution) • reionization after recombination Boomerang(Balloon) caltech, USSB, Rome •long duration balloon: over 10 days altitude 35km, 1milion m3 balloon multi band: 90, 150, 240, 400GHz •bolometric detectors cooled to 0.3K •high resolution: 18’, 10.5’, 14’, 13’ •high sensitivity: 140, 170, 210, 2700Ks1/2 •256hours data, 2.5% of sky P.de Bernardls et al. Nature 404 (2000)955 A.Langee et al. astro-ph/0005004 •Peak location lpeak=197±6 (1 error) c.f. 220 for adiabatic std =1 CDM 0.88< m+ <1.12 (95%CL) 6 parameters fit m(0.05-2), (0-1), h(0.5-0.8), n(0.8-1.3) Bh2(0.013-0.025) Flat CDM with (SNe Ia) MAXIMA-I (Balloon) UCB, Minnesota •balloon: 3 hours (2 orders worse) •multi band: 150, 240, 410GHz •bolometric detectors cooled to 0.1K (factor 3 better) •high resolution: 10’ •high sensitivity: 80Ks1/2 (factor 2 better) Confirm BOOMERANG result Jaffe et al. Astro- More data coming on April 2001 • Boomerang reanalysis (astro-ph/0104460) • MAXIMA reanalysis (astro-ph/0104459) • DASI: interferometer at south pole (astro-ph/0104489) Consistent with Flat, BBN Bh2 (=0.022) CDM model §3.Dark Matter (1) Matter Density 0 (M) 重力的に測定する必要 光っている成分: *= 0.004 Scaleによって違い: Large scaleほど大きい (a) 銀河のflat rotation curve flat rotation curve suggests the existence of Dark Halo Component = Dark Matter Begman, Broeils, Sanders MNRAS 249,523 (1991) halo disk gas (b) スケール依存性 N.Bhacall astro-ph/9901076 (2) Baryon Density B Big Bang Nucleosynthesis •Takes place at T=1010 ~ 109K •Function of baryon-photon number ratio nB/n=2.68 10-8Bh2 これが大きいと反応早めに進む nがpへの崩壊が進んでいなかった nが増え、結果4Heの量が増える D, 3Heは燃えかすなので、少なくなってしまう Review: Tytler et al. astro-ph/0001318 反応の時間発展 h=0.65 Bh2 = 0.019± 0.0024(95%) 理論値と 観測値 DのLy- Recent results of D-abundance Pettini & Bowen astro-ph/0104474 QSO 2206-199 D/H=(1.65±0.35)10-5 very low value 3 Damped Lyman Alpha system (higher column density) out of 6 measurements of D/H D/H=(2.2±0.2)10-5 Bh2 = 0.025±0.001(1) B << M Non-Baryonic Dark Matter の存在! (3) Dark Matter の候補 (A)素粒子論的候補 粒子の持つ運動エネルギーで分類 a) Cold Dark Matter (CDM) 熱浴から早い時期に離脱し運動エネルギー小 候補粒子 • 最も軽い超対称粒子(LSP) • axion Weakly Interacting Massive Particles (WIMPs) いまだかつて見つかっていない b) Hot Dark Matter (HDM) 熱浴からの離脱遅く、運動エネルギー小 候補粒子 • 質量のあるニュートリノ 必要な質量はsuper-Kamiokandeの値より はるかに大きい [3m / 93.84 eV]h 2 Super-Kはm2 ~ 10-3 eV2 103 h 2 CDMとHDMの違いは 宇宙の構造形成に大きく影響する (B) 天体的候補 •BBNを満足させるにはPrimordial Black Holeのみ •Haloの成分だけなら通常の天体でも可能? Massive Compact Halo Object (MACHO) (4) MACHO The MACHO Project: Microlensing Results from 5.7 Years of LMC Observations :ApJ.542(2000)281 What they have done •toward LMC: 5.7yr data •1.19107stars13~17events •variability of 34~230days fit amplification What they have found •expected from usual stars:2~4events MACHO exist 0.4 7 •optical depth 1.2 0.3 10 1/2 compare to the previous result •inconsistent with LMC/LMC-disk self lensing •consistent with halos of Milky Way or LMC •If they are halo events, MACHO is: 20% halo fraction for standard halo model 8~50% halo fraction with 95% CL 100% MACHO halo is ruled out with 95%CL mass:0.15~0.9M total 6~131010M within 50kpc mass of MACHO Fraction of MACHO standard halo model What is MACHO? Perhaps White Dwarf (WD)! •New cooling model of WD Hansen ApJ.520(99)680 much bluer than we thought if there is H-atmosphere H2 provide strong opacity in infrared forcing the radiation out in the blue •We had been looking for wrong ones. •In HDF, faint blue, fast moving object! Ibata et al ApJ524 (1999)L95 He-atmosphere 1kpc Hansen H-atmosphere 2kpc blue red MACHO is at most 50% of halo fraction •MACHO=M is unlikely If White Dwarf, the amount is constrained by gamma-ray from distant sources (z=0.034) Freese, et al. astro-ph/0002058 WD<(1-3)10-3h-1 Particle Dark Matter is still necessary! §4. Structure Formation Interaction between components CMB photon Thomson gravity Scatt electron dark matter baryon gravity dark halo of galaxy stars, galaxy gas large scale structure Two important epochs •matter-radiation equality epoch zeq=60000(h/0.5)2, 1012s, 104K before: radiation dominant after: matter dominant •recombination zeq=1300, 1013s, 103K before: highly ionized after: neutral, transparent Evolution 1) Before Equality epoch Inside sound horizon: photon & baryon = tightly coupled acoustic oscillations dark matter: minor component cannot evolve 2) After Equality epoch Inside horizon: dark matter: major component evolve by self-gravity ln DM DM Baryon recomb Jeans cross equality ln(1/(1+z)) ln DM DM Baryon recomb Jeans cross equality ln(1/(1+z)) 3) After Recombination photon & baryon: decoupled photon: free stream to us CMB baryon: grow (catch up with dark matter) Large Scale Structure ln DM DM Baryon recomb Jeans cross equality ln(1/(1+z)) ln DM DM Baryon recomb Jeans cross equality ln(1/(1+z)) Dark Matter: equality epoch CMB: recombination epoch If dark matter has large kinetic energy: small scale fluct are erased by random motion Massive Neutrino: Hot Dark Matter Specific Scale & Observational Quantities •Matter Density Fluctuations Horizon Scale at matter-radiation equality epoch Power Spectrum P(k) k; wave number Information 0h: horizon scale at matter-radiation equality epoch measured in [h-1Mpc] Initial Power Spectrum: very large scale Nature of dark matter: cutoff on small scale LSS cluster galaxies P(k) Horizon at equality k CDM high 0h CDM k 3 ln k low 0h Initial power HDM high 0h 1 large scale k[hMpc-1] small scale Observations (1) Matter Density Fluctuations Galaxy Redshift Survey Past: CfA, Las Campanas Redshift Survey, QDOT, … on going and future: 2dF (100,000 galaxies out of 200,000), Sloan Digital Sky Survey, 2MASS, DEEP, PSCz,... Shape of the power spectrum 0h=0.2-0.3 (Peacock & Dodds 1994) if h=0.7 (HST), 00.3 Amplitude of the power spectrum COBE normalization & Clusters low density (Eke et al 1996, Kitayama, Suto 1997) low neutrino mass: m<0.6eV (Fukugita, Liu, NS 2000) Eke, Cole, Frenk 1996 2dF vs. APM 2dF (Peacock et al.) 2dF Galaxy Redshift Surevey Mh=0.200.03, B/M=0.150.07 if h=0.7 (HST), 00.3 Peacock et al. astro-ph/0105500 Loop hole bias: Do galaxies really trace the mass? Direct measurement of underling gravitational field Peculiar Velocity Field Weak Gravitational Lensing Weak gravitational lensing Measuring cosmic shear field: distortion of the galaxy images by lensing Witteman et al. Nature 405, 143 (00) 2 ~ P(k ) 1.2 M ~ 1.2 M 2 8 References Bacon D., Refregier A., Ellis. R., 2000, MNRAS, 318, 625 Kaiser N., Wilson G., Luppino G.~A., 2000, ApJ astro-ph/0003338 Maoli R., et al., 2001, A\&A, 368, 766 Van Waerbeke L., et al., 2000, A\&A, 358, 30 Van Waerbeke L., et al., 2001a, A\&A in press Wittman D.~N., et al., 2000, Nature, 405, 143 Pirzkal et al., 2001, A&A in press, (astro-ph/0102330) Van Waerbeke L., et al., 2001a, A\&A in press, astro-ph/0101511 Canada-France-Hawaii Telscpoe, 6.5 sq. deg. Field, ~40hours data • 8 M0.6 = +0.04 0.43 - 0.05 • M=0.3, =0.7, 8=0.9 CDM is consistent M §5.Success of -CDM Low density adiabatic CDM: 0=0.3, =0.7, H0=70km/s/Mpc succeed remarkably well •distant SNe •H0 from HST key project •CMB anisotropies •Cosmic Age •Large Scale Structure of the Universe matter power spectrum P(k): shape parameter =0h=0.2~0.3 amplitude at 8h-1Mpc:8 •Is CDM real? •What is CDM? •Why and how does universe have ? CDM is just a big trick or reality? 5-1 CDM crisis on small scales? CDM is still the most favorite dark matter candidate BUT Some modification is needed Problems of CDM model: structure formation on < 1Mpc CDM predicts • an overly dense core in the centers of gal and clusters • an overly large number of halos within Local Group • triaxial halos Moore et al. ApJ Lett. 1998 High Resolution Simulations of CDM 1/(r1.4(1+(r/rc)1.4) (Moore et al. ApJ.Lett 1998) r-1.4 in the center Rotation Curve of galaxies 1/(1+(r/rc)2) (de Blok & McGaugh MNRAS 1997) const. in the center Klypin et al. in 0.5h-1Mpc ApJ 522(99)82 in 0.4h-1Mpc Klypin et al. ApJ 522(99)82 Self-interacting cold dark matter (Spergel and Steinhardt PRL 84(2000)3760) Consider •self-interaction dark matter •large scattering cross-section •negligible annihilation or dissipation •1kpc to 1Mpc mean free path XX=8.110-25cm2 (mx/GeV)(Mpc/) >1Mpc no effect <1kpc too spherical cluster cores Predictions: (1)centers of halos are spherical (2)dark matter halos have cores (3)substructure in inner regions rapidly suppressed Problems? 1) innermost regions of DM halos in massive clusters are elliptical (Miralda-Escude astro-ph/0002050) • gravitational lensing observations XX<3.210-26cm2 (mx/GeV) >25Mpc: ruled out? 2) produce too large and too round cores (Yoshida et al. astro-ph/0006134) • numerical Simulations Smaller cross-section triaxial/small core Larger cross-section round/large core 3) too small velocity dispersion of Elliptical Galaxies (Gnedin & Ostriker astro-ph/0010436) 4) appropriate particle candidates? Particles with a conserver global charge (hidden baryon number?) interacting through a hidden gauge group (hidden color?) Warm Dark Matter (WDM) keV mass particles ~ cutoff at Mpc scale RC 0.2( X h 2 / 0.15)0.15 ( g X / 1.5) 0.29 (mX / 1keV) 1.15 Mpc Colin et al. ApJ 542(2000)622 Bode, Ostriker, Turok, astro-ph/0010389 Problem: hard to form small objects • reionization before z>5: mX > 1.2keV • Ly-alpha Forest: mX > 750eV Barkana, Haiman, Ostriker astro-ph/0102304 Narayanan et al. astro-ph/0005095 5-2 Dark Energy What is ? Quintessence (Steinhardt et al.) Motivation: avoid fine tuning problem of •5th element:,baryon, dark matter, •Scalar Field works as an effective Should be: w=p/<0 (=-1 for ) =(dQ/dt)2/2+V(Q) p=(dQ/dt)2/2-V(Q) =>slow evolution of Q field Naturalness requires • as if radiation before matter-radiation euality •attractor solution Zlatev et al. PRL82(1888) 896 Influence on Cosmology = a-3(1+w) works as “weak” •effects on CMB anisotropies: change the matter-radiation equality epoch •Constraint from high z SNe modify the acceleration/deceleration We have hope to determine the equation of state w by SNe (at z~1) and/or CMB (z~1000)
© Copyright 2024 ExpyDoc