High-z Massive Star Cluster Search by [OIII] observation with ALMA Hiroshi Matsuo (NAOJ) Akio Inoue (Osaka Sangyo Univ.) with helps of Kasai and Kubo (Toho Univ.) High-z universe beyond redshift 8 To probe the period of Re-Ionization. Interstellar space should be already contaminated by heavy elements from Pop III. High UV field prevent formation of dust, hence low extinction. Massive stars are formed in clusters, nearby counter parts are R136 in 30Dor, LMC. SFG and GRB can trace massive star clusters. FIR SED of Starburst galaxies OI, OIII NII, NIII CII Fischer et al. (1999) FIR atomic fine structure lines OI – 63.185mm – 145.54mm OIII 35.1eV – 51.815mm – 88.356mm NII 14.5eV – 121.80mm – 205.30mm NIII 29.6eV – 57.330mm CII 11.3eV – 157.68mm 4.745THz 2.060THz 5.0×105 cm-3 1.5×105 cm-3 5.786THz 3.393THz 3.4×103 cm-3 5.0×102 cm-3 2.461THz 1.460THz 2.8×102 cm-3 4.5×101 cm-3 5.229THz 3×103 cm-3 1.901THz 2.7×103 cm-3 Carina Nebula by ISO LWS [CII] Mizutani, Onaka, Shibai. (2002) AKARI [O III] 88mm in Carina Nebula [OIII] 88 mm (3.4 GHz) I = 1.4e-5 W/m2/sr R = 1 arcmin W= 2.7e-7 sr 3.7 pW/m2 TB = 110 K (Dv=3km/s) 30Dor region and R136 300 Mo stars [OIII] 88mm is observed widely distributed around R136 Contour: MIPS 24mm Kawada et al. (2011) Observation with ALMA Primordial Massive Star-Forming Region [OIII] 52um, 88um (ion potential 35 eV) – Probe of electron density and UV radiation Z > 8 observation of SFGs and GRBs Site of Cosmic Re-ionization Example of [OIII] observations in submillimeter-wave ~ 10 -18 W/m2 Ferkinhoff (2010) High-z Star-Forming Galaxies M82 Line Intensity W/m2 10-17 [NeII] [SiIII] z=0.1 [OI] [OIII] [CII] [OIII] ALMA Bands 10 9 8 7 6 Herschel z=0.2 10-18 z=0.5 10-19 SPICA z=1 10-20 z=2 z=3 10-21 z=5 z=8 z=10 10 um 100 um Wavelength 1 mm [OIII] 88 mm line intensities Single massive cluster – 1 ×10-5 W/m2/sr from Carina – 10 arcmin in diameter @ 50 kpc from 30 Dor 7 × 10-11 W/m2 at z=10-5 2 × 10-22 W/m2 at z=8 1.7 mJy for 10 km/s @ 350 GHz angular diameter 10 milli-arcsec [OIII]88 flux estimation Assumption 1: Assumption 2: 𝐿[OIII]88 𝐿Hβ 𝐿Hβ 𝜈UV 𝐿ν UV 1. Cloudy calculations (Z=1/5Zsun, log10U=-1.0, log10nH=0.0) 2. Kawada et al. (2011) 30 Dor in LMC obs. ≈2 = 𝐹Hβ 𝜈obs 𝐹ν obs ≈ 0.01 𝜈obs = 𝜈UV /(1 + 𝑧) SFR conversion laws (~100Myr constant SF): 𝐿Hβ = 1.6 × 1041 erg s−1 𝑆𝐹𝑅 𝑀sun yr −1 𝑆𝐹𝑅 𝜈UV 𝐿𝜈 = 1.4 × 1043 erg s−1 UV 𝑀sun yr −1 For Z=1/5Zsun (Inoue 2011) For Z=Zsun (Kennicutt 1998) Therefore, we obtain 𝐹[OIII]88 ≈ 0.02 𝜈obs 𝐹ν obs 𝜈obs = 𝜈UV /(1 + 𝑧) NOTE: we may need to correct F_obs(UV) for dust extinction. A. Inoue (2011) Expected Brightness Gravitational lensed sources – 25-26 mag at H160 – 10 mJy Dv=100km/s – Limited redshift information HUDF sources (Dec. -28deg) – 27-28 mag at H160 – 2 mJy Dv=100km/s – Many candidates at z~8 Redshift probability distributions Z=8.11 for [OIII] 88um Z=8.74 High-z universe beyond redshift 8 To probe the period of Re-Ionization. Interstellar space should be already contaminated by heavy elements from Pop III. High UV field prevent formation of dust, hence low extinction. Massive stars are formed in clusters, nearby counter parts are R136 in 30Dor, LMC. SFG and GRB can trace massive star clusters. 宇宙背景放射観測の現状 宇宙赤外線背景放射(CIB) = 観測値 ー 前景放射 前景放射: 太陽系(黄道光)、銀河系(星、星間ダスト放射) 近赤外域には銀河の重ねあわせでは説明できない超過成分 黄道光(前景放射) 背景放射 CMB 系外銀河 第一世代の星 の重ねあわせ Ly-? From S. Matsuura (SUBARU, HST, Spitzer, BLAST) 19 Carinae Nebula at 2.3 kpc
© Copyright 2024 ExpyDoc