Why Chemistry? Satoshi Yamamoto Nami Sakai, Yoshimasa Watanabe, Department of Physics, The Univ. of Tokyo 宇宙における構造形成 初期宇宙における揺らぎ 物質の進化 銀河形成 原子 星形成 分子 原始太陽系の 環境はどうやって できあがったの? 惑星系形成 Line Survey of TMC-1 with NRO 45 m Kaifu et al. (2004) HC3N HC5N HC7N CCS, CCCS, c-C3H, CCO, CCCO, C4H2, etc Interstellar Molecules • • • • • • • H2 CO HCN, HNC, H2CO, NH3, CS, SiO, CN, SO, SO2 H3+, HCO+, HN2+, HCS+, C6HHC3N, HC5N, HC7N, HC9N, HC11N C2H, C3H, C4H, C5H, C6H, C8H, CCS, C3S CH3OH, HCOOCH3, (CH3)2O, C2H5CN, CH3CHO, HCOOH, C2H5OH, ~160 Species Tycho’s SNR Hayato et al. 2010 多くの場合 Observed Spectrum シミュレーション Physical Condition T, n etc. 電波による化学組成研究 Observed Spectrum 事実上無理 Physical Condition T(t), n(t) etc. 複雑な構造、複雑な化学過程 複雑な励起機構、非平衡 Time Scale for Chemical Equilibrium 1/τ=1/tf + 1/td tf: Time Scale for Formation of Molecules H3+ + X → HX+ + H2 a few 105 yr td: Time Scale for Destruction of Molecules Av > 5 Ionic Destruction slow > 106 yr c.f. Reactions with He+, H+, etc. Av < 3 Photodissociation fast 102 yr In Actual Cloud Cores τ~tdyn ~ tdep tdyn: Dynamical Time Scale for Molecular Clouds tdep: Time Scale for Depletion of Molecules Observed Spectrum 分子の示す意味と その背景を明らかにする Astrochemical Concept Physical Condition T(t), n(t) etc. Basic Physics & Chemistry 昔むかし。。。 用いるスペクトル線による見え方の違い Zhou et al. 1989 分子ごとの分布の違いを目の前にして。。。 • ひとつの意見 - いったい何を信じればいいのか? - CO以外は信用できない。 - 質量(柱密度)を最もよく表すものは何か? - 化学組成は役に立たない。研究の障害! • もう一つの意見 - 分布の違いの原因は何だろう? - 原因究明から新しいことがわかるのでは? 化学組成の違いの探求 CCS vs NH3 CCS NH3 CCS NH3 Suzuki et al. 1992 Chemical Evolution of Molecular Clouds C → CO Conversion CO Depletion Carbon Chains HN2+, NH3 Deuterated Species DCO+, H2D+ Complex Organic Molecules Mantle Evaporation Detection of Complex Organic Molecules in the low-mass protostar IRAS 16293-2422 Cazaux et al. 2003;Bottinelli et al. 2004; Kuan et al. 2004 HCOOCH3 HCOOCH3 C2H5CN See Poster 23 by Pineda et al. Compact Distribution Hot Corino Evaporation from Grain Mantles IRAS 16293-2422 with ALMA SV Pineda et al. (2012) Another NEWS: Detection of Glycolaldehyde HCOCH2OH Jorgensen et al. (2012) Discovery of Carbon-Chain Rich Protostar Sakai et al. (2008, 2009) Efficient Production of Various Carbon-Chain Molecules around the Protostar Triggered by Evaporation of Methane from Grain Mantles (Warm Carbon Chain Chemistry)(Sakai et al. 2008; 2009; 2010) e.g.) CH4 + C+ C2H3+ + H C2H3+ + e C2H + H + H - - - Existence of Various Carbon Chains C4H C6H- L1527 N=9-8, F2 Eu = 21 K 60” C5H, C6H, C4H2, HC5N, HC7N, HC9N, C4H- etc. (Tobin et al. 2008) Hot Corino (TIMASS: Caux et al. 2011) WCCC source CCH HC3N C4H Scenario CO Hot Corino Chemistry CO H Slow contraction H C depleted as CO CO H CO CO CO C Abundant COMs (HCOOCH3, (CH3)2O, etc.) CH3OH H CH4 H CH3OH CH3OH (ex. IRAS16293-2422 and NGC1333IRAS4A/4B) C Warm Carbon Chain Chemistry Abundant Carbon-Chains Fast contraction C (~ free fall timescale) CO H H C H C C depleted as C CO H H C CH4 CH4 CH4 CH3OH (ex. L1527 and IRAS15398-3359) Sakai et al. (2009) Tentative Detection of Deuterated Methane 2012 Sakai et al. ApJL in press. Line Survey of Low-mass Protostars with ASTE (Watanabe et al.) Chemical Evolution toward Protostellar Disks Hot Corino Star Formation Process WCCC ? ? ? ? Chemical Diversity Requirements for Unbiased Spectral Line Survey toward Many Sources (1) High Sensitivity Large Aperture (2) Wide Frequency Coverage Mm to Submm (THz), Good Atmospheric Transmision (3) Large Instantaneous Bandwidth Large Correlator System & Multi-Band Obs. (4) Reliable Observations Stable Pointing, Good Calibration Accuracy Observing Frequency (1) 70 – 400 GHz: Basic Band Various Organic Molecules (COMs, CCs, etc. ) Full Aperture (50 m) (2) 400 – 900 GHz: High Band High Excitation Lines of Fundamental Molecules Medium Aperture (30 m) (3) 900 – 1500 GHz: THz Band Fundamental Species (H2D+, HD2+, NH, NH2 etc.) Small Aperture (15 m) Example of Observing Mode (1) 80-88 GHz 140-148 GHz 230-238 GHz 340-348 GHz Total 32 GHz (dual pol.) 5-6 sets are necessary to cover the whole band. (2) 92-100 GHz 108-116 GHz 230-238 GHz 246-254 GHz Total 32 GHz (dual pol.) 2-3 sets are necessary to cover the two bands. Roles of Large Single Dish • Finding ‘New’ Sources rather than Ordinary Sources • • Obtaining Large/Complete Statistical Data • Studying Large Scale Phenomena Unbiased Survey both in Spatial and Frequency Domains Frequency Domain Survey → Chemical Diagnosis • Complimentary to ALMA → Detailed Characterization of Each Source Why Chemistry? Because it is crucial to understand evolution of matter in space. It also provides us with novel views on physical processes of star and planet formation.
© Copyright 2025 ExpyDoc