25pXB: Symposium on structure formation and dynamics in turbulence: March 25, 2005, at the 60th annual meeting of the Physical Society of Japan 2D Turbulence and Structure in Planetary Atmospheres Shigeo YODEN, Keiichi ISHIOKA, and Jitsuko HASEGAWA Department of Geophysics, Kyoto University 1. 2. 3. 4. 5. 6. Introduction Model and Numerical Procedure Jet Formation Asymmetry of Eastward and Westward Jet Profiles Mechanism: Wave-Mean Flow Interaction Concluding Remarks 1. Introduction A series of approximations of the motions of planetary atmospheres • incompressible, homogeneous fluid (like oceans) Navier-Stokes Eqs. of 3D fluid on a rotating sphere • shallowness (L~10000km, H~1km for oceans) Shallow Water Eqs. of 2D flow • slow and nearly nondivergent flow (Charney, 1948) Quasi-Geostrophic Potential Vorticity Eq. • purely nondivergent flow 2D Vorticity Eq. on a rotating sphere A briew on 2D turbulence • Decaying turbulence governed by 2D vorticity equation for incompressible, homogeneous fluid: ¶z + J ( y , z ) = - n 2D 2z , ¶t where y (x , y , t ) : stream function, z = Ñ 2 y : relative vorticity, n 2 : hyperviscosity coefficient • McWilliams(1984): Emergence of coherent vortices from a random flow field Evolution of vorticity field McWilliams (1984) • 2D decaying turbulence on a beta-plane ¶z ¶y + J (y , z ) + b = - n 2D 2z , ¶t ¶x where the Coriolis parameter f = f 0 + b y • Rhines(1975): Charney-Hasegawa-Mima equation y zonal band structure in -field β= 0 β= 52 ¶y ¶ (z - y ) + C R + J ( y , z ) = 0, ¶t ¶x where z = Ñ 2 y Charney, J.G., 1948: On the scale of atmospheric motions. Geofys Publik. XVII, 1-27. Hasegawa, A. & K. Mima, 1978: Pseudo-threedimensional turbulence in magnetized nonuniform plasma. Phys. Fluids, 21, 87-92. • Williams(1978): Forced 2D turbulence on a rotating sphere → zonal band structure similar to Jupiter snapshot of forcing Zonal mean http://nssdc.gsfc.nasa.gov/image/ zonal flow planetary/jupiter/jupiter_gany.jpg • 2D turbulence on a rotating sphere with high resolution models: Yoden & Yamada(1993), Cho & Polvani(1996a,b), Nozawa & Yoden(1997a,b), Yoden et al.(1999), . . . • Yoden & Yamada(1993): emergence of a westward circumpolar vortex + zonal jet structure in low-latitudes • Ishioka et al. (1999, Nagare Multimedia ) – Pattern Formation from 2D Decaying Turbulence on a Rotating Sphere – http://www.nagare.or.jp/mm/99/ishioka/ Ω=0 Ω=50 Ω=400 In this study, we perform a numerical experiment on 2D decaying turbulence on a beta-plane, to survey the nature of zonal jet formation from a random initial field. • When, where and how do the jets form? • Are there any asymmetric difference between the eastward and westward jets? 2. Model and Numerical Procedure • 2D vorticity equation for incompressible, homogeneous fluid on a doubly periodic beta-plane: ¶y ¶z + J (y , z ) + b = - n 2 D 2z , ¶t ¶x z = Ñ 2y (0 £ x £ 2p , 0 £ y £ 2p ) • Initial condition: 1D kinetic energy spectrum for a scalar wavenumber k : Ak g / 2 E (k , t = 0) = g , (k + k 0 ) with g = 1000 and E = 0.5. • a spectral model: ISPACK (Ishioka, 1999) y (x , y , t ) = å å k Y lk (t ) e i (kx + ly ) l - a low resolution model k max = l max = 128 k 0 = 26 n 2 = 1 ´ 10- 8 (512 ´ 512 grids) - a high resolution model k max = l max = 1024 k 0 = 228 n 2 = 1 ´ 10- 10 (4096 ´ 4096 grids) • time integrations: - 4th-order Runge-Kutta method t max = 20 (low), 12 (high) Vt = 0.004 (low), 0.0004 (high) 3. Jet Formation • Parameter-sweep in a low resolution model • characteristic (Rhines) wavenumber kb = b / U example : b = 200 ; k b : 14 < k 0 = 26 • Time evolution of relative vorticity ζ and zonal mean zonal flow (Animation) Rossby wave motions • Time evolution of potential vorticity q = ζ+ f0 + βy and dq/dy (Animation) • Time evolutions of zonal mean zonal flow, total energy, total enstrophy, and enstrophy dissipation rate 4. Asymmetry of Eastward and Westward Jet Profiles • ensembles with a high resolution model • jet: local max. or min. μ±1.645σ Number: 36 Number: 42 Max.: 0.6509 Min.: -1.0289 Westward Jets Westward Jet Eastward Jets Eastward Jet • composites of strong jets 5. Mechanism: Wave-Mean Flow Interaction • Rossby wave motion is dominant in the period of jet formation ¶ (2) • conservation law of pseudo-momentum: u - v 'z ' = 0 ¶ é (2) ù» 0 u + A ú û ¶ t êë ¶t ¶ z '2 + bˆ v ' z ' = 0 ¶t 2 deceleration of mean zonal wind ~ 2 ¶ é (2) z ' ù= 0, A = change of Rossby-wave activity u + A ê ú ¶t ë û • behavior of Rossby waves in zonal jets determines the acceleration of jets 2bˆ • Meridional propagation of Rossby-wave packet in sinusoidal zonal jets – under WKB approximation, conservation of frequency and zonal wavenumber change of meridional wavenumber and group velocity U 0.5 sin y, 6400, k 64, l0 64 ˆk 22 ˆkˆ ˆ ˆ 2 2 l kl k k k 2c 2 k l gy U yU ˆ ˆU U U crt crt (k 2 l 2 ) 2 k crt 2 U ytrn Westward Jet basic zonal flow k k2 large dissipation of Rossby waves and large l small cgy large acceleration of westward jet meridional wavenumber meridional group velocity • Formation mechanism of asymmetric zonal jets – initial random field ~ superposition of Rossby wave packets – propagation of Rossby wave packets in meridionally varying mean zonal flow – large meridional wavenumber and slow propagation in westward jets – selective damping in westward jets produces sharper and stronger westward jets • Confirmation with a linear model – linearized vorticity equation: ¶z ' ¶y ' = - J (Y, z ')- J (y ', Z )- b - n 2 D 2z ' ¶t ¶x with time-constant sinusoidal mean zonal flow – evaluation of the acceleration of mean zonal flow by the wave effect monochromatic wave basic flow acceleration random field basic flow acceleration 6. Concluding Remarks • Zonal jets form at an early stage just after the maximum of enstrophy dissipation, and persist quite robustly. • Asymmetry of the eastward and westward jet profiles exists: Westward jets are sharper and stronger. • A weakly nonlinear interaction theory between Rossby waves and mean zonal flow explains the asymmetry of the jet profiles. Wave-Mean Flow Interaction wave activity equation : ur ¶A + Ñ ×F = 0, ¶t where wave activity A º z '2/ (2bµ), bµ = b - U y y , ur and its flux F = (U A + (v '2 + u '2 ) / 2, - u ' v ') zonal mean zonal flow equation : ur ¶ (2) u - Ñ ×F = 0, ¶t where denotes zonal mean conservation law of pseudo - momentum : ¶ {u (2) + A } = 0. ¶t ▸ロスビー波の擬運動量保存則 u U u 'u ( 2) , v'v ( 2) , v Z ' ( 2) 基本場と擾乱 → 擾乱の振幅展開 •運動量保存則 ( 2) u v' ' 0 t •エンストロフィー保存則 '2 ˆ v' ' 0 t 2 •擬運動量保存則 ( 2) u A 0, t Wave activityの流出 ⇒ 西風加速 Wave activityの流入 ⇒ 東風加速 '2 A 2 ˆ ▸ロスビー波パケットの運動 •擬運動量保存則の確認 southward northward kˆ 分散関係は U k 2 2 U k ˆ で表され、 k l kˆ 波数kと U yinit k 2 2 を保存して運動。 k l ˆ 波数lは分散関係から l k2 U / k 2 ˆ k l 2 また、y方向群速度は cgy (k l ) 2 2 2 で決まる。 である。 ▸粘性の比較(高階粘性・通常の粘性) ここではx方向波数が変化しないから、y方向の1次元で書ける。 •非線形実験に即した状況 linear-1d-nocrt →緩やかな西風加速と 鋭い東風加速 •普通の粘性を与えた場合 程度は小さいものの、 東風に鋭い加速 • Vallis and Maltrud(1993): Dumbbell of anisotropic wave-turbulence boundary (k, l ) = k b (cos3 / 2 q, cos1/ 2 q sin q ), where Rhines wavenumber k b = b / U , and q = tan- 1(l / k ) • qualitatively OK • anisotropy even for large k > k b β = 100 ; kβ = 10 • Time evolution of 2-D Energy Spectrum κ0 = 26 • 1-D Energy Spectrum energy weighted k kβ • arguments with dimension L = 5 ´ 106 m ( ~ radius of the earth) U = 10 m/ s dimensional value of beta b * = (U / L2 )b = 4 ´ 10- 11 (ms)- 1 for b = 100 • If we take 8L as a new length scale and pick up only 1/8 in both directions x, y, then the results in the subdomain are regarded as another experiment: b * = (U / L2 )b / 64 b * = 6 ´ 10- 13 (ms)- 1 for b = 100 • Zonal mean zonal flow for different β* • Lateral scale of jets k0 : energy weighted wavenumber for k = 0 component κ0 k β* k0 • Dagnosis of zonal-jet fluctuations (low-resolution model, β = 200) U(y) U(y,t) ^β(y) δ[A]/δt δU/δt [div F]
© Copyright 2024 ExpyDoc