第6回 関西QNPセミナー 於:京大基研 カイラル相転移・カラー超伝導の 臨界温度近傍における クォークの準粒子描像 Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,056003 (2004), M.K., T.Koide, T.Kunihiro and Y.Nemoto, hep-ph/0502035, M.K., T.Kunihiro and Y.Nemoto, in preparation×2. Phase Diagram of QCD Color Superconductivity quark (fermion) system attractive channel in one-gluon exchange interaction. T RHIC 150~170MeV [3]c×[3]c=[3]c+[6]c Cooper instability at sufficiently low T SU (3)c color-gauge symmetry is broken! Chiral Symm. GSI,J-PARC Broken Color Superconductivity Hadrons 0 Compact Stars 2SC pairing u at low energy: m d Phase Diagram of QCD T Hadronic excitations in QGP phase •soft mode of chiral transition - Hatsuda, Kunihiro. •qq bound state - Shuryak, Zahed; Brown, Lee, Rho, Shuryak. •Lattice simulations – Asakawa, Hatsuda; etc. 150~170MeV Pre-critical region of CSC M.K., et al., 2002,2004 •large pair fluctuations precursory phenomena of CSC Chiral Symm. Broken Hadrons 0 ~100MeV Color Superconductivity(CSC) m Numerical Result : Density of State N ( ) N free ( ) The pseudogap survives up to e =0.05~0.1 ( 5~10% above TC ). m = 0 MeV e = 0.05 Spectral Function of Quarks A(p, p ) (p, p ) (p, p ) 0 0 0 0 0 quasiparticle peak ~ k quark part -(,k) sharp peak with negative dispersion [MeV] k [MeV] k [MeV] [MeV] TABLE OF CONTENTS 1, Introduction 2, Quarks above CSC phase transition 3, Quarks above chiral phase transition 4, Summary 2, Quarks above CSC phase transition T m Nature of CSC T m weak coupling 0 strong coupling! D ~ 100MeV D / EF ~ 0.1 in electric SC D / EF ~ 0.0001 Short coherence length x. Mean field approx. works well. There exist large fluctuations of pair field. Large pair fluctuations can invalidate MFA. cause precursory phenomena of CSC. cf.) Bosonization of Cooper pairs Matsuzaki, PRD62,017501 (2000) Abuki, Hatsuda, Itakura, PRD 65, 074014 (2002) ペア場のゆらぎ F(D) 二次相転移点では、秩序変数のゆらぎが発散。 ペア場D(x) for CSC D クォーク対 ペア場のゆらぎは、 集団モードを形成する。 1 極 T カラー超伝導 m Tcで原点に到達 ソフトモード Pair Fluctuations in Superconductors electric conductivity Precursory Phenomena in Alloys •Electric Conductivity •Specific Heat •etc… e T TC TC enhancement above Tc e ~10-3 Thouless, 1960 Aslamasov, Larkin, 1968 Maki, 1968, … High-Tc Superconductor(HTSC) in quasi-two-dimensional cuprates 1986~ large fluctuations induced by strong coupling and quasi-two dimensionality pseudogap e Quarks in BCS Theory Quasi-particle energy: D sgn(k m ) ( k m ) 2 D 2 D m k Density of State: N ( ) de dk dk k d k m 2 N ( ) 2D (k m ) 2 D 2 m Pseudogap :Anomalous depression of the density of state near the Fermi surface in the normal phase. Conceptual phase diagram Renner et al.(‘96) The origin of the pseudogap in HTSC is still controversial. NJL model Nambu-Jona-Lasinio model (2-flavor,chiral limit): L i GS ( )2 ( i 5 τ )2 C GC ( i 5 2A )( i 5 2A ) C Parameters: H I A A :SU(2)F Pauli matrices :SU(3)C Gell-Mann matrices C :charge conjugation operator GS 5.01GeV 2 650MeV GC / GS 0.62 so as to reproduce (250MeV)3 , f 93MeV Klevansky(1992), T.M.Schwarz et al.(1999) Notice: 2SC is realized at low m and near Tc. We neglect the gluon degree of freedom. M.K. et al., (2002) Response Function of Pair Field Linear Response external field: H ex dx D†ex C i 5 22 h.c. expectation value of induced pair field: Dind ( x)i 5 22 ( x) Dind ( x) 2GC ( x)i 5 22 C ( x) i ds Hex (s), O(x, t ) t C ex ex t0 dt ' dxD R ( x, x ')D ex ( x ') D R (x, t ) 2GC ( x)i 5 22 C ( x), (0)i 5 22 C (0) (t ) Retarded Green function Fourier Transformation Dind (k ) D(k, )Dex (k ) T-matrix Dtot (k ) Dind (k) Dex (k) GC1(k, )Dex (k ) Rondom Phase Approx. (RPA) (k, ) GC 1 1 GC Q(k , ) Q(k, n ) p, im k p, in im Thouless Criterion - for second order phase transitions 2 W(D 0) 1 GCQ(0,0) D 2 1 Thermodynamic Potential r.h.s. is equal to zero at Tc due to the critical conditon. The fluctuation diverges at Tc. W(D) DR(0,0) diverges at TC D.J. Thouless, AoP 10,553(1960) T TC D 2 W(D 0) D 2 Softening of Pair Fluctuations Dynamical Structure Factor S (k ) 1 e 1 1 Im (k ) T =1.05Tc m= 400 MeV T Tc e Tc The peak grows from e ~ 0.2 electric SC:e ~ 0.005 Softening of Pair Fluctuations Dynamical Structure Factor S (k ) 1 e 1 1 Im (k ) T =1.05Tc m= 400 MeV Pole of Collective Mode Dtot (k ) GC1(k, )Dex (k ) pole: 1 GC1 Q(k, ) 0 T Tc e Tc The peak grows from e ~ 0.2 electric SC:e ~ 0.005 The pole approaches the origin as T is lowered toward Tc. (the soft-mode of the CSC) T-matrix Approximation 1 G(k , in ) 0 G (k , in ) (k , in ) Quark Green function : q, im (k, n ) k q, in im d 3q 0 T ( k q , ) G (q, m ) n m 3 (2 ) m Decomposition of G: quark part 0 0 G(p, p0 ) p m 0 p0 m p p0 m p 1 1 0 p 2 :projection op. Spectral Function of Quarks Spectral Function 1 A(k , ) Im G R (k , ) vanishes in the chiral limit from parity and rotational invariance A(k, ) 0 (k, ) 0 V (k, )kˆ S (k, ) spectral function of baryon density Density of State N() d 3k 0 N ( ) (k , ) 3 (2 ) N d 3 x 0 0 (k , ) 1 Tr 0 Im G R (k , ) 4 Numerical Result : Density of State N ( ) N free ( ) The pseudogap survives up to e =0.05~0.1 ( 5~10% above TC ). Spectral Function of Quarks 0(,k) m= 400 MeV e=0.01 Depression at Fermi surface quasi-particle peak, =k)~ km k 0 k [MeV] kF Im ,k=kF) [MeV] kF The peak in Im around =0 owing to the decaying process: [MeV] Im ,k) e |Im -| T TC TC Peak of |Im | w =m –k k kF k -m 0 m k, k m : on-shell |Im | has peaks around =mk, which is found to be the hole energy. peak of ImS quasi-particle peak w =m–k w =k–m coincide at fermi surface. Re ,k) 0, 0 : collective mode Dispersion Relation of Quarks [MeV] 80 m= 400 MeV e=0.01 =(p) 40 0 rapid increase around =0 -40 -80 320 400 k [MeV] Re G ( , p) 0 1 p m Re (, p) 0 480 cf.) Super Normal D 0 kF k 0 D kF k Dispersion Relation of Quarks [MeV] 80 m= 400 MeV e=0.01 =(p) 40 0 -40 -80 320 400 k [MeV] rapid increase around =0 However, w.f. renormalization 1 Z p1m Re ( , p ) 0 0.7 ( k , ) / 480 Re ,k=kF) [MeV] still Fermi-liquid-like Im R (k , ') Re (k , ) d ' i R 1 Diquark Coupling Dependence stronger diquark coupling GC GC ×1.3 m= 400 MeV e=0.01 ×1.5 Resonant Scattering of Quarks GC=4.67GeV-2 Janko, Maly, Levin, PRB56,R11407 (1995) p m Re (, p) 0 p m Re ( , p) Resonant Scattering of Quarks GC=4.67GeV-2 Mixing between quarks and holes kF nf () k Level Repulsion D D f B ( ) Im (p, ) D2 (2 )4 (3) (p) ( ) 4 q0 q0 d q 0 Im R (k , ) Im ( k q , q ) Im G ( q , q ) tanh coth 0 0 (2 )4 2 T 2 T Im R (p, ) 2D2 ( | p | m ) R Im (p, ') Re R (p, ) P d ' ' 1 2 2D | p | m pF 1 p m Re (, p) 0 p 2 ( p m )2 2D2 0 Quarks at very high T •1-loop (g<<1) •Hard Thermal Loop ( p, , mq<<T ) 0 0 G(p, p0 ) D ( , p) D ( , p) (, p) m 2f dispersion relations 1 2 2 gT 6 Ep Eh Re[D ( , p)] 0 E p , Eh1 Re[D ( , p)] 0 E p , Eh1 plasmino Eh Ep plasmino Quarks at very high T •1-loop(g<<1) •Hard Thermal Loop approximation( p, , mq<<T ) 0 0 G(p, p ) D ( , p) D ( , p) 0 (, p) m 2f dispersion relations 1 2 2 gT 8 Eh Ep Re[D ( , p)] 0 E p , Eh1 Re[D ( , p)] 0 E p , Eh1 Ep Eh 3, Quarks above chiral phase transition T m Soft Mode of Chiral Transition Response Fucntion D(k,) D(k , ) Hatsuda, Kunihiro (’85) scalar and pseudoscalar parts fluctuations of the chiral order parameter Spectral Function A(k ) 1 Im D(k ) T m for k=0 ε→0 (T→TC) Sigma Mode above Tc Spectral Function Hatsuda, Kunihiro (’85) sharp peak in time-like region s -mode s k 2 ms2 k soft mode of CSC sharp peak around = k =0 k Quark Self-enrgy 1 Quark Green function : G(k , in ) 0 G (k , in ) (k , in ) Self-energy: (k, in ) d 3q 0 T D ( k q , ) G (q, m ) n m 3 (2 ) m D(k, in ) 1 G0 (k, in ) :free quark progagator in the chiral limit m = 0 MeV e = 0.05 Spectral Function of Quarks A(p, p ) (p, p ) (p, p ) 0 0 0 0 0 quasiparticle peak ~ k quark part -(,k) sharp peak with negative dispersion [MeV] k [MeV] k [MeV] [MeV] Self Energy [MeV] k [MeV] Two peaks in Im produces five solutions of the dispersion relation. m = 0 MeV e = 0.05 Spectral Function of Quarks A(p, p ) (p, p ) (p, p ) 0 0 0 0 0 positive energy part [MeV] -(,k) +(,k) k [MeV] k [MeV] k [MeV] -(,k) [MeV] Resonant Scatterings of Quarks q q h q q ( q q)soft q ( q q)soft q, qhole q, qhole ( q q)soft q h q ( q q)soft q , qhole q , qhole These resonant scatterings affect the peaks of the spectral functions in a non-trivial way. q Level Repulsion D m,-m D m,-m for the CSC f B ( ) Im (p, ) 2 4 (3) f B (2 ) Im ( p , ) D (2 ) (p) ( ) 4 (3) D (2 ) (p) ( m) ( m) Im R (p,) 2D2 ( | p | m m) ( | p | m m) dispersion relation m>D m=D Self Energy ( q q)soft q ( q q)soft q q qhole T dependence [MeV] e = 0.05 +(,k) k [MeV] -(,k) k [MeV] T dependence [MeV] e = 0.1 +(,k) k [MeV] -(,k) k [MeV] T dependence [MeV] e = 0.15 +(,k) k [MeV] -(,k) k [MeV] T dependence [MeV] e = 0.2 +(,k) k [MeV] -(,k) k [MeV] T dependence [MeV] e = 0.25 +(,k) k [MeV] -(,k) k [MeV] T dependence [MeV] e = 0.3 +(,k) k [MeV] -(,k) k [MeV] T dependence [MeV] e = 0.35 +(,k) k [MeV] -(,k) k [MeV] T dependence [MeV] e = 0.4 +(,k) k [MeV] -(,k) k [MeV] T dependence [MeV] e = 0.5 +(,k) k [MeV] -(,k) k [MeV] Summary The soft mode associated with the chiral and color-superconducting phase transitions drastically modifies the property of quarks near Tc. above CSC phase: Gap-like structure manifests itself! resonant scattering of quarks above chiral transition: Three peak structure appears! two resonant scatterings of quarks and anti-quarks Future: finite quark mass, finite density, phenomenological applications
© Copyright 2025 ExpyDoc