Nanotube Structure

Hexagonal Lattice (Definition of Vectors)
a1
Chiral vector
y
Ch  na1  ma2
a2
(4,-5)
x
T
3
3
a1  ( acc ,
acc )
2
2
3
3
a 2  ( acc ,
acc )
2
2
a1  a 2  3acc  a
O
Ch

(6,3)
3 1
a1  ( , )a
2 2
3 1
a 2  ( , ) a
2
2
Wrapping (10,0) SWNT (zigzag)
(0,0)
a1
a2
Ch = (10,0)
y
x
Wrapping (10,0) SWNT (Animation)
(0,0)
a1
a2
Ch = (10,0)
y
x
Wrapping (10,10) SWNT (armchair)
(0,0)
a1
a2
y
x
Ch = (10,10)
Wrapping (10,10) SWNT (Animation)
(0,0)
a1
a2
y
x
Ch = (10,10)
Wrapping (10,5) SWNT (chiral)
(0,0)
Ch = (10,5)
a1
a2
y
x
Wrapping (10,5) SWNT (Animation)
(0,0)
Ch = (10,5)
a1
a2
y
x
Hexagonal Lattice (n,m) nanotubes
(0,0) (1,0)
(1,1)
(2,0) (3,0)
(4,0) (5,0)
(2,1) (3,1) (4,1)
(2,2)
(5,1)
(3,2) (4,2)
(3,3)
(6,0) (7,0) (8,0)
(6,1) (7,1)
(4,3)
(5,3)
(4,4)
(6,3)
(5,4)
a1
(9,1)
(8,2)
(7,3)
(6,4)
(5,5)
y
(8,1)
(5,2) (6,2) (7,2)
(7,4)
(6,5)
(10,1)
(9,2)
(8,3)
(10,2)
(9,3)
(8,4)
(7,5)
(6,6)
(9,4)
(8,5)
(7,6)
(8,6)
(7,7)
a2
Zigzag
(9,0) (10,0) (11,0)
Armchair
x
n - m = 3q (q: integer): metallic
n - m  3q (q: integer): semiconductor