Hexagonal Lattice (Definition of Vectors) a1 Chiral vector y Ch na1 ma2 a2 (4,-5) x T 3 3 a1 ( acc , acc ) 2 2 3 3 a 2 ( acc , acc ) 2 2 a1 a 2 3acc a O Ch (6,3) 3 1 a1 ( , )a 2 2 3 1 a 2 ( , ) a 2 2 Wrapping (10,0) SWNT (zigzag) (0,0) a1 a2 Ch = (10,0) y x Wrapping (10,0) SWNT (Animation) (0,0) a1 a2 Ch = (10,0) y x Wrapping (10,10) SWNT (armchair) (0,0) a1 a2 y x Ch = (10,10) Wrapping (10,10) SWNT (Animation) (0,0) a1 a2 y x Ch = (10,10) Wrapping (10,5) SWNT (chiral) (0,0) Ch = (10,5) a1 a2 y x Wrapping (10,5) SWNT (Animation) (0,0) Ch = (10,5) a1 a2 y x Hexagonal Lattice (n,m) nanotubes (0,0) (1,0) (1,1) (2,0) (3,0) (4,0) (5,0) (2,1) (3,1) (4,1) (2,2) (5,1) (3,2) (4,2) (3,3) (6,0) (7,0) (8,0) (6,1) (7,1) (4,3) (5,3) (4,4) (6,3) (5,4) a1 (9,1) (8,2) (7,3) (6,4) (5,5) y (8,1) (5,2) (6,2) (7,2) (7,4) (6,5) (10,1) (9,2) (8,3) (10,2) (9,3) (8,4) (7,5) (6,6) (9,4) (8,5) (7,6) (8,6) (7,7) a2 Zigzag (9,0) (10,0) (11,0) Armchair x n - m = 3q (q: integer): metallic n - m 3q (q: integer): semiconductor
© Copyright 2024 ExpyDoc