Inclusive Coulomb-Breakup Study of Neutron

不安定核反応実験における
高速中性子の検出
Fast Neutron Detection in
Unstable Nuclei Reaction Experiment
Ryuki Tanaka
Tokyo Institute of Technology
Background
17
Ne 18Ne 19Ne 20Ne 21Ne 22Ne 23Ne 24Ne 25Ne 26Ne 27Ne 28Ne 29Ne 30Ne 31Ne 32Ne
34
Ne
Proton-rich
proton number
C
C
8
3
1
H
6
Li
He 4He
2
H
3
H
F
20
F
21
Li
6
He
22
O
O
O
O
F
23
F
24
F
25
O
O
O
O
F
18
19
20
21
22
23
24
12
13
14
15
16
17
18
19
20
21
22
23
11
12
C
13
14
15
16
17
18
19
20
11
B
12
13
14
15
C
N
O
N
C
B
N
C
B
N
C
Be 10Be 11Be 12Be
7
F
17
O
9
Be
Stable
19
16
B
7
F
15
10
B
18
14
N
10
F
13
O
9
17
8
Li
9
Li
B
N
C
N
B
C
N
C
17
B
N
C
N
C
19
B
N
O
26
F
27
26
F
29
O
28
31
F
F
O
N
Oxygen Anomaly
22
C
11Li
14
Be
11
Li
Neutron Halo
(11Li, 14Be, 22C, etc.)
n
9Li
8
He
Neutron-rich
n
neutron number
Breakup reactions of extreme neutron-rich nuclei at Intermediate energies 
Invariant Mass Spectroscopy involving Detection of Fast Neutrons
Invariant Mass Spectroscopy
"Mass" measurement of 26O (Unbound) for study of the Oxygen Anomaly
E
26O
Erel(relative energy)
24O+n+n
27F
E/A ~250 MeV
@ RIBF, RIKEN
26O
m(26 O)  Erel  m(24 O)  2m(n)
(unbound)
Neutron Measurement

P(n ) n
 24
 P( O)
P(n )
24O
n
C target
2
2



 

Erel    E ( Pi )     Pi 
 i
  i 
1. Development of the large acceptance
neutron detector "NEBULA"
3. Development of next generation
neutron detector "HIME"
2. Evaluation of newly developed simulator
5
Momentum of Neutron
Photomultiplier Tube
y
tl
z
Plastic scintillator
x
target
(r0, t0)
beam
~10 m
(r1, t1)
n
Time of Flight (TOF), Position
→ E, p
n
n
p
n+C, n+H →
charged particles
(p, α, etc.)
tr
t 1 ∝ t l + tr
x1 ∝ tl - tr
y1,z1=geo.
Development of NEBULA
Neutron Detector "NEBULA"
NEutron-detection system for Breakup of Unstable-nuclei with Large Acceptance
✔ Key Component of spectrometer SAMURAI@RIKEN
24cm+24cm
180cm
12cm
12cm
a Single Module (NEUT)
x 120 modules
180cm
wall2
wall1
NEUT
360cm
VETO
(distinguish
charged particle)
n
p
SAMURAI Commissioning Experiment in March 2012
→ evaluation of NEBULA
SAMURAI Commissioning Experiment 1
7Li(p,n)7Be(g.s.+0.43
MeV)
・Quasi-monoenergetic
・Single Neutron
・Cross Section is well known
→ TOF Resolution, Efficiency
SAMURAI Magnet
Bmax=3T, superconducting
p
200 MeV
(250 MeV)
n
natLi
p
NEBULA
Time of Flight Resolution
Threshold level = 6 MeVee
θlab < ±40 mrad
Counts
7Li(p,n)7Be(g.s.+0.43MeV)
σTOF=335(5) ps
total
6Li(p,n)6Be
(4.4%)
7Be
other excited states
+ scattered neutrons
All effects not related to
NEBULA taken into account
TOF(measured) - TOF(calculate) (ns)
Intrinsic Resolution:
σTOF=263(6) ps
cf.) ~300 ps (design value)
Efficiency
Threshold level = 6 MeVee
θlab < ±40 mrad
Counts
7Li(p,n)7Be(g.s.+0.43MeV)
32.3(4) %
total
6Li(p,n)6Be
(4.4%)
7Be
other excited states
+ scattered neutrons
~6% correction
for neutron flux loss, etc.
En (MeV)
Intrinsic Efficiency:
34.7±0.4(stat.)±1.0(syst.)%
cf.) 37% Geant4 with INCLXX
40% DEMONS
SAMURAI Commissioning Experiment 2
C(14Be,12Be+n+n)
・2-neutron event
→ cross-talk rejection
SAMURAI Magnet
Bmax=3T, superconducting
14Be
n
n
C
220 MeV/A
NEBULA
12Be
2-neutron event and Cross-talk event
wall2
p
n
β12
wall1
p
n
NEUT
VETO
Cross-talk event
β02
β01
cross-talk event satisfy
β12 < β01
→ β12 > β01
can only be 2-neutron event
n n
2-neutron
1-neutron
2-neutron event selection:
β01/β12 < 1
1-Neutron Event
2-Neutron Event
Pb(15C,14C+n)
C(14Be,12Be+n+n)
Crosstalk
2-neutron
Crosstalk
(+ 2-neutron)
Counts
Counts
fake 2-neutron
13%
43%
(~2% is fake)
→ ~1/20 contribution
β01/β12
β01/β12
(0 MeV < Erel <1 MeV)
C(14Be,12Be+n+n)
β01/β12
Counts
87(5) keV (1σ)
projection
to x axis
Erel (MeV)
T. Sugimoto et al., Phys. Lett. B 654, 160 (2007)
En=68 MeV/A
100 keV (1σ)
14Be
β01/β12 < 1
is valid cross-talk rejection procedure !!
(2+)
Development of Simulator
Development of Simulator
✔ Simulation is Needed for Analysis and Development of Neutron Detector
・ response function
・ acceptance
・ efficiency
etc.
✔ Simulator for neutron detector array is Not established for
En ~ 250 MeV neutron
→ ・ developed new simulator with Geant4
・ compare with
SAMURAI commissioning data
7Li(p,n)7Be(g.s.+0.43 MeV)
(En=200 MeV)
Evaluation of Simulator
compare three physics models for n+plastic scintilator
・ BERT (intranuclear cascade model)
・ INCLXX (intranuclear cascade model)
・ MENATE_R (treat each reaction channel) Z. Kohley et al., Nucl. Instr. and Meths. A 682, 59 (2012).
Counts
BERT
Experiment
MENATER
INCLXX
Light Output (MeVee)
Evaluation of Simulator
compare three physics models for n+plastic scintilator
・ BERT (intranuclear cascade model)
・ INCLXX (intranuclear cascade model)
・ MENATE_R (treat each reaction channel) Z. Kohley et al., Nucl. Instr. and Meths. A 682, 59 (2012).
MENATER w/o
Experiment
BERT
INCLXX
Light Output Threshold (MeVee)
Efficiency(sim.) / Efficiency(exp.)
Efficiency (%)
MENATER
12C(n,p)12B
MENATER
BERT
INCLXX
Light Output Threshold (MeVee)
INCLXX gives best agreement
Development of HIME
Neutron Detector "HIME"
HIgh resolution detector array for Multi-neutron Events
1.8m
12cm
12cm
NEBULA
sy~5cm, sx=sz~3.5cm, st~0.2ns
DErel=84 keV (1σ) @1MeV
40cm 10cm
1.7m
1m
40cm
2cm
HIME
sx=sy~1.2cm, sz~0.6cm, st~0.1ns
DErel=40 keV (1σ) @1MeV
4cm
Cross-talk Rejection Method
NEBULA
β01/β12 < 1 → lose about half of 2-neutron event
NEBULA: ε4n~0.01%
Cross-talk Rejection Method
HIME
tracking of recoiled proton
calculate the scattered neutron kinematics
Cross-talk Rejection Method
Geant4 Simulation
z
x
20
1000
-20
0
1010
1020
1030
p
20
n
n
2-neutron
1-neutron
10
y
0
n
Cross-talk event
n
p
-10
-20
signal position of one event
1040
Cross-talk Rejection Method
Geant4 Simulation
z
x
20
1000
-20
0
1010
1020
1030
1040
20
assume n+p elastic
10
y
0
-10
-20
signal position of one event
Cross-talk Rejection Method
Geant4 Simulation
z
x
20
1000
-20
0
1010
1020
1030
1040
p
20
10
n
y
1-neutron
0
n
Cross-talk event
n
p
-10
-20
signal position of one event
HIME: ε4n~1% (goal)
conclusions
― large acceptance neutron detector NEBULA ―
・ TOF Resolution : 263(6) ps (En=200 MeV)
→ achieved the design value ~300 ps
・ Efficiency : 34.7±0.4(stat.)±1.0(syst.)% (En=200 MeV)
→ good agreement with newly developed simulator: 37%
・ Cross-talk rejection: β01/β12 < 1
~1/20 contribution of cross-talk for 14Be measurement
― Simulation ―
・ New simulation code reproduce SAMURAI experiment
― next generation neutron detector HIME ―
・ Relative Energy Resolution
40 keV at Erel=1 MeV
・ 2-neutron event selection method is established
backup
Analysis of NEBULA
7Li(p,n)7Be(g.s.+0.43
MeV)
Time of Flight Resolution
En = 200 MeV
Threshold level = 6 MeVee
θlab < ±40 mrad
Counts
7Li(p,n)7Be(g.s.+0.43MeV)
σTOF=335(5) ps
total
7Be
6Li(p,n)6Be
other excited states
+ scattered neutrons
(4.4%)
subtract fluctuation of
・ beam velocity
・ time of neutron origin
TOF(measured) - TOF(calculate) (ns)
NEBULA's contribution to TOF resolution: σTOF=263(6)
ps (En = 200 MeV)
σTOF=257(8) ps (En = 250 MeV)
Energy Resolution
En = 200 MeV
Threshold level = 6 MeVee
θlab < ±40 mrad
Counts / 0.1 ns
7Li(p,n)7Be(g.s.+0.43MeV)
σE=2.59(4) MeV
total
6Li(p,n)6Be
7Be
(4.4%)
Energy (MeV)
other excited states
+ scattered neutrons
subtract fluctuation of
・ neutron velocity
・ time of neutron origin
σE=2.03(5) MeV (En = 200 MeV)
σE=3.00(8) MeV (En = 250 MeV)
Efficiency
En = 200 MeV
Threshold level = 6 MeVee
θlab < ±40 mrad
Counts
7Li(p,n)7Be(g.s.+0.43MeV)
32.3(4) %
total
6Li(p,n)6Be
7Be
(4.4%)
other excited states
+ scattered neutrons
En (MeV)
NEBULA's intrinsic efficiency:
according to simulation
~ 6-7% correction need
34.7(4)% (En = 200 MeV)
34.3(7)% (En = 250 MeV)
26.0(7) mbar/sr @ 200 MeV → 2.7 %
Efficiency
En = 200 MeV
Threshold level = 6 MeVee
θlab < ±40 mrad
Counts
7Li(p,n)7Be(g.s.+0.43MeV)
32.3(4) %
total
6Li(p,n)6Be
7Be
(4.4%)
other excited states
+ scattered neutrons
En (MeV)
NEBULA's intrinsic efficiency:
count right part of energy dist.
→ 20508 counts
full fit procedure
→ 20191 counts
1.5% difference (FWHM)
TOF resolution correction
Efficiency correction
~ 6-7% correction
・ neutron flux loss by materials
- Li target
- neutron window
~3%
- air between
neutron window and NEBULA
・ scattered neutrons ~3%
6.9% (En = 200 MeV)
6.2% (En = 250 MeV)
Two-Neutron Event
Pb(15C,14C+n)
C(14Be,12Be+n+n)
β01/β12
β01/β12
One-Neutron Event
Erel (MeV)
Erel (MeV)
Two-Neutron Event
Pb(15C,14C+n)
C(14Be,12Be+n+n)
Counts
Counts
One-Neutron Event
β01/β12
β01/β12
(0 MeV < Erel < 100 MeV)
・ MENATE_R (treat each reaction channel)
MENATE_R is ported code of neutron detector simulator MENATE written in FORTRAN
BERT, INCLXX (Geant4 built in class)
・ BERT: Bertini Intranuclear Cascade Model (Bertini: H. W. Bertini)
- M. P. Guthrie, R. G. Alsmiller and H. W. Bertini, Nucl. Instr. Meth, 66, 1968, 29.
- widely used
・ INCLXX: INCL++ → c++ version of INCL
INCL: Liege Intranuclear Cascade Model (Liege: the Belgian city)
- developed and validated against recent data
- typical users are from the nuclear physics community studying spallation processes
(Journal of Physics: Conference Series 119 (2008) 032024)
Nuclear Instruments and Methods in
Physics Research A 491 (2002) 492–506
model limit ~200 MeV < Ein < ~10 GeV
DEMONS
A. Del Guerra, Nucl. Instr. and Meths. 135, 337 (1976).
A. Del Guerra, Nucl. Instr. and Meths. 135, 337 (1976).
Efficiency(sim.) / Efficiency(exp.)
6 MeVee
Threshold (MeVee)
Detection Method
NEBULA
classical detection technic
― reconstruct momentum by
a signal from one module
HIME
tracking detection
― reconstruct momentum by
a track of recoiled proton
→ efficient cross-talk rejection
for multi-neutron detection
NEBULA: ε4n~0.01%
HIME: ε4n~1% (goal)
Cross-talk Rejection
Geant4 Simulation
Cross-talk event
2n event
p
n
p
p
n
p
n
n
nn
further simulation is ongoing
Time Resolution
ordinary event
tracked event (n>=3)
Energy dependence of timing resolution
Efficiency and Erel Resolution
ordinary event
Geant4 Simulation
8.8%
18%
3.3%
37%
Relative Energy Resolution (keV)
Efficiency (%)
ordinary event
tracked event (n>=3)
tracked event (n>=3)
42 keV
40 keV
improve only ~5%
En (MeV)
Relative Energy (MeV)
・ optimization of timing calculation
・ HIME is to small
・ time resolution is already high (100 ps)
(En = 250 MeV, 10 m, A=100)
High Resolution is already obtained
Simulated Example
12B
10Li(1+,2+)9Li+n
(RIBF exp. Planned @250MeV/nucleon)
Two p-wave states ( p (p3/2)x n(p1/2)  1+, 2+)
should be there! But not yet clarified . (Myo et al. TOSM)
HIME
NEBULA
10Li
10Li
(1+ and 2+)
(1+ and 2+)
1+ 2+
Erel(9Li+n)
Erel(9Li+n)
Experimental Setup-I
1. Event-by-event setup
・Low event rate(~380 events/h, Beam 5x105 cps)– Use of T0 Detector
・Accurate beam rate
・Better T Resolution
( <0.1ns)
Measure
Timing Resolution, and
Absolute Detection Efficiency @Ein=250MeV
Experimental Setup-II
2. High-Intensity Setup
・High event rate (T0 detector– Removed)
・Lower accuracy for beam rate
・Long TOF (Better E spectrum)
Measure Relative Efficiency @Ein=100/ 250 MeV
test with cosmic ray is ongoing
(will be presented by T. Nakashima)
test exp. will be performed at RCNP