High-pressure phase of calcium: Prediction of

High-pressure phase of calcium:
Prediction of phase Ⅵ
and upper-pressure phases
from first principle
Phys.Rev.B 81,092104(2010)
Takahiro Ishikawa,Hitose Nagara,
Naoshi Suzuki,Taku Tsuchiya,
and Jun Tsuchiya
Shimizu lab. ORII Daisuke
Contents
• Introduction
What’s “High-pressure phase”?
⇒An interesting property
What’s “phase Ⅵ”?
First principles calculations
• Motivation
• Research
• Summary
High-pressure phase of calcium:
Prediction of phase Ⅵ
and upper-pressure phases
from first principle
What’s “High-pressure phase”?
The structure change!!
=Structural phase transition
(構造相転移)
Pressure
simple cubic
bcc
fcc
Decreasing inter atomic
distance by compression
Electronic states change!
An interesting property
pressure-induced superconductivity
• Superconductivity(超伝導)
⇒electrical resistance = 0
⇒Meissner effect B=0
@ extremely-lowtemperature
Normalconductivity (常伝導)
cool
electrical cable
Phase transition!!
Superconductivity (超伝導) !!
linear motor car
What’s “phase Ⅵ”?
• Structural phase transitions (構造相転移) of calcium
Ca-I Ca-II
Ca-III
Ca-IV
fcc bcc
sc (simple cubic)
20 32
Ca-V
①
113
②
139
?
[GPa]
①【Ca-Ⅳ structure】
②【Ca-Ⅴ structure】
Tetragonal P41212 structure with
fourfold helical atomic
arrangements
Orthorhombic Cmca structure with zigzag
atomic arrangement
⇒ Highest Tc in simple element!
Transition temperature Tc
25K @ 161GPa (Ca-Ⅴ?)
Matsuoka private communication
First principles calculations
Input data
Output data
1. Crystal structure
2. Type of atoms
1. Charge density
2. Total energy
3. Stress
4. Inter atomic force
etc…
Determination of
electronic states
Motivation
Background
Investigating mechanism of high Tc
superconductivity
Predicting the structure of Ca in which the
highest Tc is observed
Computational details
structure
1. fcc
2. bcc
3. sc (simple cubic)
4. hcp
5. Cmca
6. Cmcm
7. Pnma
8. I41/amd
9. P41212
10.I4/mcm(0,0,γ)
𝐺| 𝑇=0
Input data
1. Making crystal structure (lattice
vectors and atomic coordinates)
2. Type of atoms
⇒structural optimization
⇒electronic states
Comparing the enthalpies up to 200Gpa
𝐺 = 𝐸 + 𝑃𝑉 − 𝑇𝑆
= 𝐸 + 𝑃𝑉 = 𝑯(enthalpy)
The most stable structure @ 0K
Comparing enthalpies
𝐺| 𝑇=0
𝐺 = 𝐸 + 𝑃𝑉 − 𝑇𝑆
= 𝐸 + 𝑃𝑉 = 𝑯(enthalpy)
The lowest ΔH point
⇒Most stable structure
figure 1
figure 2
Experiment
Ca-I
Ca-II
Ca-III
Ca-IV
Ca-V
fcc
bcc
sc (simple cubic)
P41212
Cmca
20 32
113
139
[GPa]
Calculation in this paper
Ca-I Ca-II
fcc bcc
3.5
Ca-IV Ca-V Ca-VI?
Ca-Ⅲ
I41/amd
32
Ca-VII?
I4/mcm(00γ)
P41212
74
Ca-VIII?
Cmca
109 117
Pnma
Ca-VII?
I4/mcm(00γ)
[GPa]
135
hcp
495 [GPa]
Pnma
I4/mcm(00γ)
Superconductivity
Prediction
30
25
20
Tc(K)
• Theoretically ,Tc=25K
was obtained around
the phase boundary
between Ca-Ⅵ and CaⅦ.
158(GPa)
Ca-Ⅴ
Ca-Ⅱ
10
Experimental result
Ca-Ⅵ
Ca-Ⅳ
Ca-Ⅲ
15
Ca-Ⅶ
5Ca-Ⅰ
0
0
20
40
60
80
100
pressure(GPa)
Ca-Ⅵ (⇒Recently , the structure of Ca-Ⅵ was
experimentally confirmed.)
(Y.Nakamoto et al , Phys.Rev.B , 81, 140106(R) (2010).)
50
100
150
pressure(GPa)
J.Phys. Soc. Jpn. 75, 083703 (2006).
120
140
Summary
• The structures of the phases Ca-Ⅵ and
Ca-Ⅶ were predicted.
• The highest TC of 25K in
the Ca-Ⅵ or Ca-Ⅶ phase.