菊池自由エネルギー に対するCCCPアルゴリズ ムの拡張 東京工業大学総合理工学研究科 知能システム科学専攻 渡辺研究室 西山 悠, 渡辺澄夫 Outline High-dimensional distribution marginals O( m d ) Functional Bethe free energy Kikuchi free energy Optimization techniques BO(M. Welling, et. al., 2001) CCCP(A. L. Yuille, 2002) SEQ(Tonosaki, et. al., 2007) (Approximate) marginals New CCCP (NCCCP) Performance of CCCP CCCP guarantees to monotonically decrease Kikuchi free energy unlike belief propagation. requires huge computational cost compared to belief propagation. does not always converge for synchronous update of inner loop. Contribution Purpose We extend CCCP algorithm for Kikuchi free energy and present a new CCCP (NCCCP) algorithm. NCCCP algorithm includes conventional CCCP guarantees to monotonically decrease Kikuchi free energy. is more stable even for synchronous inner loop. can reduce huge computational cost underlying CCCP. Key Idea NCCCP is based on the generalization of concave and convex decomposition in Kikuchi free energy. convex concave Kikuchi free energy = + = + = + Parameters change the decomposition. Background G (V , E ) High-dimensional distribution 1 p( x1 ,, xd ) Wij ( xi , x j ) Z {ij}B Marginals x2 x1 x6 W23 W34 x4 1 p (x ) Wij ( xi , x j ) x \ x Z {ij}B W12 x3 W35 W56 x5 ( V ) Direct calculation is intractable. e.g. Maximization of the Posterior Marginals (MPM) estimation Free Energy Minimization of Kullback-Leibler distance from a trial distribution r (x) to the target distribution p (x) is equivalent to that of the following functional with respect to r (x) : F (r ) S (r ) {ij}B Eij rij log Z . (1) Helmholtz Free Energy Entropy S (r ) is S (r ) r (x) log r (x) x Energy Eij is Eij log rij ( xi , x j ) Kikuchi Free Energy Kikuchi free energy, which is defined on set of regions R , is given by as follows: FKikuchi ({r }R ) c S (r ) c E R Entropy term consists of weighted sum of entropies S in R Overcounting number c 1 c c , sup( ) R r Energy term in (1) is exactly rewritten as this form. is given by where c 1 for basic clusters . Bethe Free Energy When the set of regions R is given by R {V , E} FBethe ({ri }iV ,{rij }{ij}E ) S {ij}B ij (Ni 1) Si c E iV Bethe free energy R r Example (1) 1 2 3 Basic clusters C {1245, 2356, 4578, 5689} 4 5 6 Set of regions R 7 8 1245 2356 4578 25 R {C, 25, 45, 56, 58, 5 } 9 45 56 5 Region Graph 5689 58 Sub (5689) {56, 58} Sup (56) {2356, 5689} Sub (56) {5} Sup (5) {25, 45, 56, 58, C} Overcounting number 1245 2356 4578 25 45 56 5689 58 c1245 c2356 c4578 c5689 1 c25 c45 c56 c58 1 ( c 1 c5 1 ( c5 1 5 c 1 2) sup( ) c 1 4 4) sup( 5) Kikuchi free energy FKikuchi ({r }R ) S1245 S2356 S4578 S5689 S25 S45 S56 S58 S5 c E R r Example (2) Basic clusters 1 2 4 C {12, 23, 14 , 25, 36, 45, 56} 3 5 Set of regions R 6 R {C, 1 , 2, 3, 4, 5, 6 } 12 23 14 25 36 45 56 1 2 3 4 Region Graph 5 6 Overcounting number c 1 ( C ) c1 c3 c4 c6 1 c2 c5 2 Bethe free energy FBethe ({r }R ) S12 S23 S14 S25 S36 S45 S56 S1 2S2 S3 S 4 2S5 S6 c E R r Concave Convex Procedure (CCCP) CCCP algorithm guarantees to monotonically decrease the function(al) F (r) Fvex (r) Fcave (r) , where Fvex (r) is convex and Fcave (r) is concave, by the update Fvex (r (t 1) ) Fcave (r (t ) ). Kikuchi free energy consists of such functions. Conventional CCCP FK ,vex ({r }R ) cmaxS (r ) cmax E R R r FK ,cave ({r }R ) (c cmax )S (r ) (c cmax ) E R R r (cmax max c ) R Double loop algorithm = Outer loop + Inner loop Main Results Trivial pair creation 0 f vex (r) f vex (r) New CCCP (NCCCP) FK ,vex (r) FKikuchi (r) fvex (r) FK ,cave (r) f vex (r) Particularly, let convex funtional f vex (r) be of the form f vex (r) uS , S (r ) uE , E R R r . Free parameters Parameters {uS , }, {uE , } satisfy uS , max{0,c }, uE, R ( R). FKikuchi (r) FK ,vex (r, u) FK ,cave (r, u) A high-dimensional vector u {uS , } changes the decomposition. CCCP U 0 U {u R|R| | u max{0,c }, R} NCCCP Free Energy The update rule Fvex (r (t 1) ) Fcave (r (t ) ) is obtained by differentiating NCCCP free energy subject to normalization and consistency properties of marginals. NCCCP free energy FK ,CCCP (r(t 1) | r(t ) , u) Fvex (r(t 1) , u) r(t 1) Fcave (r(t ) , u) Lagrange functional LK ,CCCP (r (t 1) | r , u) FK ,CCCP (t ) v ( r(t 1) 1) R x ( t 1) ( t 1) ( x )( r r ) , R sub d ( ) x x \ NCCCP Algorithm for Kikuchi (1/2) Theorem (Outer Loop of NCCCP) Outer loop of NCCCP algorithm for minimizing Kikuchi free energy is given by as follows: ( t 1) k r uk ( t ) ck u k k {r } exp[ v~k sub d ( k ) k , (x ) ck u k sup d ( k ) , k ( x k ) ck E k ], ck u k ck u k k R. Here {v~k }, { , (x )} :Lagrange multipliers {ck } {uk } R :overcounting numbers :free parameters :set of regions NCCCP Algorithm for Kikuchi (2/2) Theorem (Inner Loop of NCCCP) Inner loop of NCCCP is given by as follows: uk ( t ) ck u k k exp( v~k( 1) ) {r } exp[ k(, ) (x ) sub d ( k ) xk ck u k (,k) (x k ) ck E k ], ck u k ck u k sup d ( k ) k R, 1 1 exp{( )k(,l1) (xl )} ck uk cl ul x k \l uk ( t ) ck u k k {r } ul ( t ) cl ul {rl } exp[v~ ( ) k k(,) (x ) sub d ( k ) \ l exp[v~l( ) sub d ( l ) ck u k ( ) l , (x ) cl ul sup d ( k ) sup d ( l ) \ k (,k) (x k ) ck u k ( ) ,l (xl ) cl ul ck E k ] ck u k , cl El ] cl ul k R, l subd (k ). Remark NCCCP algorithm guarantees to monotonically decrease Kikuchi free energy even if free vector u is changed within U (t ) u at every outer loop (i.e, ). NCCCP algorithm (u U ) U (t ) Outer loop u u u cmax c u ( 2) (1) u (t ) (1) u (1) Inner loop Outer loop u ( 2 ) u ( 2) Inner loop ( 2) u Outer loop Approximate marginals u (1) CCCP u (1) u ( 2) u (t ) Update Manner of Inner Loop Asynchronous update time time 1 time 2 CCCP guarantees to converge. Synchronous update time time 1 time 2 CCCP does not always converge. NCCCP converges. Role of the free vector When | u | is small When | u | is large Outer loop Outer loop Outer loop u slow or convergence fast Outer loop fast Outer loop slow Outer loop or convergence fast Outer loop fast Outer loop Approximate marginals Approximate marginals There exists an optimal series of vector u . Example: Gaussian Distributions We consider the special case where Kikuchi free energy is Bethe free energy (i.e., R {V , E}). the target distribution is Gaussian distributions. | S |1 2 1 T exp{ x Sx} Target distribution: N (0, S ) d 2 ( 2 ) Marginals and Lagrange multipliers: ri ( xi ) N (0, i ) ~ rij ( xi , x j ) N (0, Sij ) exp{ ( x )} N (0,~ ) ij ,i i i {1,, d} ij ,i exp{ij,i ( xi )} N (0,~ij,i ) {ij} B NCCCP for Bethe free energy Theorem (Outer loop in Gaussian distributions) ui 1 (it ) i {1,, d }, ij,i , ui | Ni | 1 ui | Ni | 1 jNi si ,i ~ij,i si , j ~ {ij} B. ~ , ~ s s j ,i j, j ij , j (it 1) ~ Sij(t 1) Theorem (Inner loop in Gaussian distributions) ( 1) ij ,i ( 1) ij , j Here si2, j ui | Ni | 1 ui 1 1 { (it ) ik(,i) }, 1 ui | Ni | 2 | Ni | ui | Ni | 1 kNi \{ j} ij(,i ) ui | Ni | 1 | Nj | u j | N j | 1 si2, j uj 1 1 { (tj ) jk(,)j }, 1 u j | N j | 2 | N j | u j | N j | 1 kN j \{i} ij(,j) u j | N j | 1 | Ni | ui satisfies ui | Ni | 1. {ij} B. {ij} B. Abbreviated Case We consider the special case where inverse covariance matrix S satisfies Ni N , i {1,, d }, si, j s , {ij} B. Corollary (Outer and Inner loops which satisfy (2)) Outer loop (t 1) u |N| (t ) u | N | 1 u | N | 1 Inner loop ( 1) s2 u | N | 1 1 u | N | 1 ( ) { (t ) } 1 u | N | 2 | N | u | N | 1 u | N | 1 ( ) |N| Here u | N | 1. ( 2) Stability Expansion of inner loop around the fixed-point ( 1) * s2 | N | 1 u | N | 1 { } ( ) O(( ( ) ) 2 ) u | N | 2 u | N | { 1 *}2 |N| Necessary condition for the convergence of inner loop: u 2 | N | 3 Conventional CCCP (u | N |) : | N | 3 The condition is very tight. CCCP does not converge for the dense graph. NCCCP u 2 | N | 3 The condition can always be satisfied for arbitrary dense graphs by making parameter u large. Numerical Results (Synchronous) CCCP Convergence S (10, 0.1, 4) S (10, 0.1, 5) S (10, 2, 5) S (10, 0.1, 10 ) Numerical Results (Asynchronous) CCCP S (10, 0.1, 5) S (10, 2, 5) S (10, 0.1, 10 ) S (10, 0.1, 20) Conclusion We presented a new CCCP (NCCCP) algorithm for Kikuchi free energy. NCCCP algorithm includes conventional CCCP guarantees to monotonically decrease Kikuchi free energy. is more stable even for synchronous inner loop. can reduce huge computational cost underlying CCCP. Future works To design efficient NCCCP algorithm based on the optimality of free parameters. To apply NCCCP algorithm to practical problems such as CDMA multi-user detection problems or decoding algorithm for LDPC codes. Reference M. Welling and Y. W. Teh proceeding of UAI (2001) A. L. Yuille Neural Computation 14 1691 (2002) Y. Tonosaki and Y. Kabashima Interdisciplinary Information Sciences 13 57 (2007) T. Shibuya et. al. IEICE Trans. On Fundamentals E88-A5 1346 (2005)
© Copyright 2025 ExpyDoc