ベーテ自由エネルギーに対する CCCPアルゴリズムの拡張 東京工業大学総合理工学研究科 知能システム科学専攻 渡辺研究室 西山 悠, 渡辺澄夫 Background Probabilistic information processing • Inference for Bayesian networks • Error correcting codes 000101 noise decode 000111 000101 • CDMA multi-user detection • Probabilistic image processing degrade image restored image Task High-dimensional distribution Marginals Intractable Task p( x1 , x2 ,, xd ) Intractable p( x , x ,, x ) x1 xi 1 2 d xd • Belief propagation (Sum product algorithm) Bethe free energy Optimization techniques • BO (M. Welling, et. al., 2001) • CCCP (A. L. Yuille, 2002) • SEQ (Tonosaki, et. al., 2007) (Approximate) marginals Performance of CCCP CCCP • guarantees to monotonically decrease Bethe free energy unlike belief propagation. • requires huge computational cost compared to belief propagation. • does not always converge for synchronous update of inner loop. Purpose We extend CCCP algorithm for Bethe free energy and present a new CCCP (NCCCP) algorithm. New CCCP (NCCCP) algorithm • includes conventional CCCP. • guarantees to monotonically decrease Bethe free energy. • is more stable even for synchronous inner loop. • can reduce huge computational cost underlying CCCP. Concave and convex procedure(CCCP) CCCP algorithm guarantees to monotonically decrease the function(al) F (r) Fvex (r) Fcave (r) Convex by the update rule Fvex (r (t 1) ) Fcave (r ). (t ) Extremum Concave Bethe free energy Bethe free energy FBethe ({ri }, {rij }) Sij (| Ni | 1)Si Eij rij d {ij}B {ij}B i 1 Concave Convex Conventional CCCP d Sij Si {ij}B i 1 E {ij}B ij rij d | N i | Si i 1 Approximate marginals Main result (Key idea) NCCCP Bethe free energy d Sij Si {ij}B i 1 E {ij}B ij rij f vex (r) d | N i | Si f vex (r) i 1 Trivial pair creation 0 f vex (r) f vex (r) an arbitrary convex functional NCCCP d Sij Si {ij}B i 1 E {ij}B ij rij f vex (r) d | N i | Si f vex (r) i 1 d Particularly, f vex (r ) (1 ui ) Si . i 1 Free parameters u U , u CCCP U u CCCP algorithm NCCCP algorithm (u U ) Outer loop Outer loop Inner loop u Outer loop Outer loop Inner loop u u u Inner loop u Inner loop u Outer loop Outer loop Approximate marginals Approximate marginals NCCCP algorithm for Bethe free energy Theorem (Outer loop) Outer loop of NCCCP algorithm for minimizing Bethe free energy is given by as follows: | N i |1 ui ui (t ) ri( t 1) ( xi ) (ri ) exp{ vi 1 ui jN i ij ,i ( xi )}, i {1,, d }, rij(t 1) ( xi , x j ) Wij exp{vij ij,i ( xi ) ij, j ( x j )}, {ij} B, where {ui } satisfies ui 0 for all i {1,, d}. NCCCP algorithm for Bethe free energy Theorem (Inner loop) Inner loop of NCCCP is given by as follows: | N i |1 ui ui (t ) exp{ vi( 1) } (ri ) exp{ ik(,)i ui k N i i {1,, d }, }dxi , {ij} B, exp{vij( 1) } Wij exp{ij(,i) ij(, )j }dxj dxi , exp{(1 exp{(1 1 ( 1) )ij,i } ui 1 ( 1) )ij, j } ui Wij exp{vij( ) ij(, )j }dx j | N i |1 ui ui (t ) (ri ) ( ) i exp{v (r ) ui kN i \{ j } uj exp{v ( ) j kN j \{i} {ij} B, , } Wij exp{vij( ) ij(,i) }dxi | N j |1 u j (t ) j ( ) ik ,i ( ) jk , j uj , } {ij} B. Update Manner of Inner Loop Asynchronous update time time 1 time 2 Theorem (Inner loop) Inner loop of NCCCP is given by as follows: | N |1 u ik(,)i u ( 1) (t ) exp{ vi } (ri ) i i i exp{ ui k N i }dxi , exp{vij( 1) } Wij exp{ij(,i) ij(, )j }dxj dxi , 1 exp{(1 )ij(,i1) } ui CCCP guarantees to converge. Synchronous update time time 1 1 exp{(1 )ij(, j 1) } ui W ij (t ) (ri ) exp{vij( ) ij(, )j }dx j | N i |1 ui ui W ij ( ) i exp{v kN i \{ j } uj ui , } exp{vij( ) ij(,i) }dxi | N j |1 u j (rj(t ) ) ik(,)i exp{v (j ) kN j \{i} (jk ,) j uj time 2 CCCP does not always converge. NCCCP converges. . } Role of free parameters u When u are small When u are large Outer loop Outer loop slow or Outer loop Outer loop convergence slow or convergence Approximate marginals Outer loop Outer loop Outer loop Outer loop fast fast fast fast Approximate marginals There exist optimal values u . Numerical Results(1/2) (i) Asynchronous inner loop S (10, 2, 5) CCCP S (10, 0.1, 20) CCCP Numerical Results (2/2) (ii) Synchronous inner loop S (10, 0.1, 5) CCCP S (10, 2, 5) CCCP Conclusion We presented a new CCCP (NCCCP) algorithm for Bethe free energy. New CCCP (NCCCP) algorithm • includes conventional CCCP. • guarantees to monotonically decrease Bethe free energy. • is more stable even for synchronous inner loop. • can reduce huge computational cost underlying CCCP. Future works • To design efficient NCCCP algorithm based on the optimality of free parameters. • To apply NCCCP algorithm to practical problems such as CDMA multi-user detection problems or decoding algorithm for LDPC codes. 1.外崎幸徳,樺島祥介, “CCCPに基づくCDMAマルチユーザ検出アルゴリズム,” 電子情報通信学会論文誌 D, vol. J89-D, no. 5, pp. 1049-1060, 2006. 2.T. Shibuya, K. Harada, R. Tohyama, and K. Sakaniwa, “Iterative Decoding Based on the Concave-Convex Procedure,” IEICE Trans. Fundam. Electron. Commu. Comput. Sci., vol. E88-A, no. 5, pp. 1346-1364, 2005. Example: Gaussian Distributions NCCCP algorithm= Outer loop + Inner loop Theorem (Outer loop in Gaussian distributions) | Ni | 1 ui (t ) 1 i ij,i , ui ui jNi si ,i ~ij,i si , j ~ ~ , ~ s s j ,i j, j ij , j (it 1) ~ Sij(t 1) i {1,, d }, {ij} B. Theorem (Inner loop in Gaussian distributions) ( 1) ij ,i ( 1) ij , j si2, j ui | N | 1 ui (t ) 1 1 { i i 1 ui 1 | Ni | u ui ( ) i ij,i | Nj | si2, j | N j | 1 u j (t ) 1 1 { j 1 u j 1 | N j | u uj ( ) j ij, j | Ni | uj }, {ij} B, {ij} B. ( ) ik ,i kN i \{ j } kN j \{i} ( ) jk , j },
© Copyright 2024 ExpyDoc