Exploiting Shared Chinese Characters in Chinese Word Segmentation Optimization for Chinese-Japanese Machine Translation Chenhui Chu, Toshiaki Nakazawa, Daisuke Kawahara, Sadao Kurohashi Graduate School of Informatics, Kyoto University 1 EAMT2012 (2012/05/28) Outline • • • • • • • Word Segmentation Problems Common Chinese Characters Chinese Word Segmentation Optimization Experiments Discussion Related Work Conclusion and Future Work 2 Outline • • • • • • • Word Segmentation Problems Common Chinese Characters Chinese Word Segmentation Optimization Experiments Discussion Related Work Conclusion and Future Work 3 Word Segmentation for Chinese-Japanese MT Zh: 小坂先生是日本临床麻醉学会的创始者。 Ja: 小坂先生は日本臨床麻酔学会の創始者である。 Zh: 小/坂/先生/是/日本/临床/麻醉/学会/的/创始者/。 Ja: 小坂/先生/は/日本/臨床/麻酔/学会/の/創始/者/である/。 Ref: Mr. Kosaka is the founder of The Japan Society for Clinical Anesthesiologists. 4 Word Segmentation Problems in Chinese-Japanese MT Zh: 小/坂 /先生/是/日本/临床/麻醉/学会/的/ 创始者 /。 Ja: 小坂 /先生/は/日本/臨床/麻酔/学会/の/ 創始/者 /である/。 Ref: Mr. Kosaka is the founder of The Japan Society for Clinical Anesthesiologists. • Unknown words – Affect segmentation accuracy and consistency • Word segmentation granularity – Affect word alignment 5 Outline • • • • • • • Introduction Common Chinese Characters Chinese Word Segmentation Optimization Experiments Discussion Related Work Conclusion and Future Work 6 Chinese Characters • Chinese characters are used both in Chinese (Hanzi) and Japanese (Kanji) • There are many common Chinese characters between Hanzi and Kanji • We made a common Chinese characters mapping table for 6,355 JIS Kanji (Chu et al., 2012) 7 Common Chinese Characters Related Studies • Automatic sentence alignment task (Tan et al., 1995) • Dictionary construction (Goh et al., 2005) • Word level semantic relations investigation (Huang et al., 2008) • Phrase alignment (Chu et al., 2011) • This study exploits common Chinese characters in Chinese word segmentation optimization for MT 8 Outline • • • • • • • Word Segmentation Problems Common Chinese Characters Chinese Word Segmentation Optimization Experiments Discussion Related Work Conclusion and Future Work 9 Reason for Chinese Word Segmentation Optimization • Segmentation for Japanese is easier than Chinese, because Japanese uses Kana other than Chinese characters • F-score for Japanese segmentation is nearly 99% (Kudo et al., 2004), while that for Chinese is still about 95% (Wang et al., 2011) • Therefore, we only do word segmentation optimization for Chinese, and keep the Japanese segmentation results 10 Parallel Training Corpus ① Chinese Lexicons Extraction Common Chinese Characters Chinese Lexicons System Dictionary of Chinese Segmenter Chinese Annotated Corpus for Chinese Segmenter ② Chinese Lexicons Incorporation ③ Short Unit Transformation System Dictionary with Chinese Lexicons Short Unit Chinese Corpus for Chinese Segmenter Training Optimized Chinese Segmenter 11 Parallel Training Corpus ① Chinese Lexicons Extraction Common Chinese Characters Chinese Lexicons System Dictionary of Chinese Segmenter Chinese Annotated Corpus for Chinese Segmenter ② Chinese Lexicons Incorporation ③ Short Unit Transformation System Dictionary with Chinese Lexicons Short Unit Chinese Corpus for Chinese Segmenter Training Optimized Chinese Segmenter 12 ① Chinese Lexicons Extraction • Step 1: Segment Chinese and Japanese sentences in the parallel training corpus • Step 2: Convert Japanese Kanji tokens into Chinese using the mapping table we made (Chu et al., 2012) • Step 3: Extract the converted tokens as Chinese lexicons if they exist in the corresponding Chinese sentence 13 Extraction Example Ja: 小坂 /先生/は/日本/臨床/麻酔/学会/の/ 創始/者 /である/。 Kanji tokens conversion Ja: 小坂/先生/は/日本/临床/麻醉/学会/の/ 创始/者/である/。 Check Zh: 小/坂 / 先生 /是/ 日本 / 临床 / 麻醉 / 学会 /的/ 创始 者 /。 Extraction Chinese Lexicons : 小坂 先生 日本 临床 麻醉 学会 创始 者 Ref: Mr. Kosaka is the founder of The Japan Society for Clinical Anesthesiologists. 14 Parallel Training Corpus ① Chinese Lexicons Extraction Common Chinese Characters Chinese Lexicons System Dictionary of Chinese Segmenter Chinese Annotated Corpus for Chinese Segmenter ② Chinese Lexicons Incorporation ③ Short Unit Transformation System Dictionary with Chinese Lexicons Short Unit Chinese Corpus for Chinese Segmenter Training Optimized Chinese Segmenter 15 ② Chinese Lexicons Incorporation • Using a system dictionary is helpful for Chinese word segmentation (Low et al., 2005; Wang et al., 2011) • We incorporate the extracted lexicons into the system dictionary of a Chinese segmenter • Assign POS tags by converting the POS tags assigned by the Japanese segmenter using POS tags mapping table between Chinese and Japanese 16 CTB (Penn Chinese Treebank) JUMAN (Kurohashi et al., 1994) AD(adverb) 副詞(adverb) CC(coordinating conjunction) 接続詞(conjunction) CD(cardinal number) 名詞(noun)[数詞(numeral noun)] FW(foreign words) 未定義語(undefined word)[アルファベット(alphabet)] IJ(interjection) 感動詞(interjection) M(measure word) 接尾辞(suffix)[名詞性名詞助数辞(measure word suffix)] NN(common noun) 名詞(noun)[普通名詞(common noun)/サ変名詞(sahen noun)/ 形式名詞(formal noun)/副詞的名詞(adverbial noun)], 接尾辞(suffix)[名詞性名詞接尾辞(noun suffix)/ 名詞性特殊接尾辞(special noun suffix)] NR(proper noun) 名詞(noun)[固有名詞(proper noun)/地名(place name)/ 人名(person name)/組織名(organization name)] NT(temporal noun) 名詞(noun)[時相名詞(temporal noun)] PU(punctuation) 特殊(special word) VA(predicative adjective) 形容詞(adjective) VV(other verb) 動詞(verb)/名詞(noun)[サ変名詞(sahen noun)] 17 Parallel Training Corpus ① Chinese Lexicons Extraction Common Chinese Characters Chinese Lexicons System Dictionary of Chinese Segmenter Chinese Annotated Corpus for Chinese Segmenter ② Chinese Lexicons Incorporation ③ Short Unit Transformation System Dictionary with Chinese Lexicons Short Unit Chinese Corpus for Chinese Segmenter Training Optimized Chinese Segmenter 18 ③ Short Unit Transformation • Adjusting Chinese word segmentation to make tokens 1-to-1 mapping as many as possible between a parallel sentences can improve alignment accuracy (Bai et al., 2008) • Wang et al. (2010) proposed a short unit standard for Chinese word segmentation, which can reduce the number of 1-to-n alignments and improve MT performance 19 Our Method • We transform the annotated training data of Chinese segmenter utilizing the extracted lexicons CTB: 从_P/ 有效性_NN /高_VA/的_DEC/ 格要素_NN /… Lexicon: 有效 (effective) Short: Ref: Lexicon : 要素 (element) 从_P/ 有效_NN/性_NN /高_VA/的_DEC/ 格_NN/要素_NN /… From case element with high effectiveness … 20 Constraints • We do not use the extracted lexicons that are composed of only one Chinese character 歌颂(praise) 歌(song) ・・・ long token extracted lexicons 歌(song)/ 颂(praise) short unit tokens 21 Outline • • • • • • • Word Segmentation Problems Common Chinese Characters Chinese Word Segmentation Optimization Experiments Discussion Related Work Conclusion and Future Work 22 Two Kinds of Experiments • Experiments on Moses • Experiments on Kyoto example-based machine translation (EBMT) system Nakazawa and Kurohashi, 2011) – A dependency tree-based decoder 23 Experimental Settings on MOSES (1/2) Parallel Training Corpus Zh-Ja paper abstract corpus (680k sentences) Chinese Annotated Corpus NICT Chinese Treebank (same domain of parallel corpus, 9,792 sentences) CTB 7 (31,131 sentences) Chinese Segmenter In-house Chinese segmenter Japanese Segmenter JUMAN (Kurohashi et al., 1994) MT system Moses with default options, except for the distortion limit (6→20) 24 Experimental Settings on MOSES (2/2) • Baseline: Only using the lexicons extracted from Chinese annotated corpus • Incorporation: Incorporate the extracted Chinese lexicons • Short unit: Incorporate the extracted Chinese lexicons and train the Chinese segmenter on the short unit training data 25 Results of Chinese-to-Japanese Translation Experiments on MOSES BLEU NICT Chinese Treebank Baseline 34.92 Incorporation 36.19 Short unit 36.82 CTB 7 36.64 37.39 38.59 • CTB 7 shows better performance because the size is more than 3 times of NICT Chinese Treebank • Lexicons extracted from a paper abstract domain also work well on other domains (i.e. CTB 7) 26 Results of Japanese-to-Chinese Translation Experiments on MOSES BLEU NICT Chinese Treebank Baseline 31.42 Incorporation 31.24 CTB 7 31.83 32.34 Short unit 31.95 31.95 • Not significant compared to Zh-to-Ja, because our proposed approach does not change the segmentation results of input Japanese sentences 27 Experimental Settings on EBMT (1/2) Parallel Training Corpus Zh-Ja paper abstract corpus (680k sentences) Chinese Annotated Corpus CTB 7 (31,131 sentences) Chinese Segmenter In-house Chinese segmenter Japanese Segmenter MT system JUMAN (Kurohashi et al., 1994) Kyoto example-based machine translation (EBMT) system 28 Experimental Settings on EBMT (2/2) • Baseline: Only using the lexicons extracted from Chinese annotated corpus • Short unit: Incorporate the extracted Chinese lexicons and train the Chinese segmenter on the short unit training data 29 Results of Translation Experiments on EBMT BLEU Baseline Short unit Zh-to-Ja 22.84 23.36 Ja-to-Zh 19.10 19.15 • Translation performance is worse than MOSES, because EBMT suffers from low accuracy of Chinese parser • Improvement by short unit is not significant because the Chinese parser is not trained on short unit segmented training data 30 Outline • • • • • • • Word Segmentation Problems Common Chinese Characters Chinese Word Segmentation Optimization Experiments Discussion Related Work Conclusion and Future Work 31 Short Unit Effectiveness on MOSES Baseline (BLEU=49.38) Input: 本/论文/中/,/提议/考虑/现存/实现/方式/的/ 功能 / 适应性 /决定/对策/目标/ 的/保密/基本/设计法/。 Output: 本/論文/で/は/,/提案/する/ 適応/的 /対策/を/決定/する/セキュリティ/基 本/設計/法/を/考える/現存/の/実現/方式/の/ 機能 /を/目標/と/して/いる/. Short unit (BLEU=56.33) Input:本/论文/中/,/提议/考虑/现存/实现/方式/的/ 功能 / 适应/性 /决定/对策/目标/ 的/保密/基本/设计/法/。 Output: 本/論文/で/は/,/提案/する/考え/現存/の/実現/方式/の/ 機能/的 / 適応/性 /を/決定/する/対策/目標/の/セキュリティ/基本/設計/法/を/提案/する/. Reference 本/論文/で/は/,/対策/目標/を/現存/の/実現/方式/の/ 機能/的 / 適合/性 /も/考慮/ して/決定/する/セキュリティ/基本/設計/法/を/提案/する/ . (In this paper, we propose a basic security design method also consider functional suitability of the existing implementation method for determining countermeasures target.) 32 Number of Extracted Lexicons Source Parallel training corpus 18,584 Source NICT Treebank CTB 7 Chinese annotated corpus 13,471 26,202 Short unit Chinese corpus 12,627 25,490 • The number of extracted lexicons deceased after short unit transformation because duplicated lexicons increased 33 Short Unit Transformation Percentage • NICT Chinese Treebank – 6,623 tokens out of 257,825 been transformed to 13,469 short unit tokens, the percentage is 2.57% • CTB 7 – 19,983 tokens out of 718,716 been transformed to 41,336 short unit tokens, the percentage is 2.78% 34 Short Unit Transformation Problems (1/3) • Improper transformation problem 不好意思 (sorry) long token 好意(favor) ・・・ extracted lexicons 不(not)/ 好意 (favor)/ 思 (think) short unit tokens 35 Short Unit Transformation Problems (2/3) • Transformation ambiguity problem 充电器(charger) 充电(charge) 电器(electric equipment) ・・・ long token extracted lexicons 充电(charge)/ 器(device) 充(charge)/ 电器(electric equipment) short unit tokens 36 Short Unit Transformation Problems (3/3) • POS Tag assignment problem 被实验者_NN (test subject) long token 实验(test) ・・・ 被_NN(be)/ 实验_NN(test)/ 者_NN(person) extracted lexicons short unit tokens The correct POS tag for “被 (be)” should be LB (“被” in long bei-const) 37 Outline • • • • • • • Word Segmentation Problems Common Chinese Characters Chinese Word Segmentation Optimization Experiments Discussion Related Work Conclusion and Future Work 38 Bai et al., 2008 • Proposed a method of learning affix rules from a aligned Chinese-English bilingual terminology bank to adjust Chinese word segmentation in the parallel corpus directly 39 Wang et al., 2010 • Proposed a method based on transfer rules and a transfer database. – The transfer rules are extracted from alignment results of annotated Chinese and segmented Japanese training data – The transfer database is constructed using external lexicons, and is manually modified 40 Conclusion • We proposed an approach of exploiting common Chinese characters in Chinese word segmentation optimization for ChineseJapanese MT • Experimental results of Chinese-Japanese MT on a phrase-based SMT system indicated that our approach can improve MT performance significantly 41 Future Work • Solve the short unit transformation problems • Evaluate the proposed approach on parallel corpus of other domains 42
© Copyright 2024 ExpyDoc