Careful study of Ultrafast Magneto-Optics [Referenece] “Ultrafast Magneto-Optics in Nickel: Magnetism or Optics?” B.Koopmans, M.van Kampen et al. Phys.Rev.Lett. 85,844(2000) ITOH Lab. Yoshitaka Sakamoto (坂本 圭隆) 1 Contents Introduction ・Background ・Aim of the reference Main talk ・light, Kerr effect, and TRMOKE ・Measurement configuration ・Predictable signal ・Result and Analysis (in the reference) Summary 2 Background Problem: Clock per second ・storage 1000 (capacity, writing speed) ↓ Solution: 100 10 ・spin memory year (rapid writing by using light, 1980 2005 large capacity [lamellar magnetic layer]) 薄 層 磁 性 膜 ⇒TRMOKE (time-resolved MO Kerr effect) is used. 3 MO signal Aim of the reference 0 Ultrafast demagnetization? -12 0.5ps(10sec) delay time Cu 3nm 2.field Ni 0~15nm 1.Ni thickness Cu(111)or(001) 3.temperature 4 TRMOKE measurement T R M O K E Time-resolved Magnetic optical 時間分解 磁気光学 Kerr effect カー効果 pump pulse amplitude reflection polarization is changed time pulse laser Field H Kerr effect 5 Polarization 偏 光 : How a electromagnetic wave goes… x z y <<<<Linearly Polarization → E(t) = Eoexp(-iωt) x^ x z y <<<<Elliptical Polarization → E(t) = E1 exp(-iωt) x^ ^ +E2 Eoexp(-iωt) y 6 Elliptical polarization x Elliptical Polarization>>>>> → ^ E(t) = E1 exp(-iωt) x ⇔ +E2 exp(-iωt) y^ → ^ ^ E(t) = ½(E1+E2)exp(-iωt) (x+iy) y ^ ^ + ½(E1-E2)exp(-iωt) (x-iy) + = 7 Magnet-Optic Kerr effect One of the Magnetic-Optics which contains many property of the target. Field H Field H Field H Polar Kerr Longitudinal Transverse effect Kerr effect 極カー効果 縦カー効果 Kerr effect 横カー効果 8 Reflective index N±=n±+iκ± N: complex refractive index n: refractive index κ: extinction coefficient 屈折率 複屈折率 Complex reflective index of amplitude z E0S 複素振幅反射率 E0P (Fresnel coefficient) E1S ψ0 E1P ψ1 n0 x N 消光係数 ψ2 tan(ψ 0-ψ2) E 1P ^ rP= ― = ――――― E0P tan(ψ0+ψ2) sin(ψ 0-ψ2) E 1S ^ rS= ― = - ――――― E0S sin(ψ0+ψ2) E2P E2S 9 Reflective index of amplitude for Circular Polarized light ^± - n0 N r^±= ――― N^±+n0 θK θ+ -θ- = - ――― 2 ^ r+: for right circular light ≡r+exp(iθ+) ^ r-: for left circular light ≡r-exp(iθ-) :Kerr rotation angle カー回転角 ηK |r^+|- |r^-| = ―――― :Kerr ellipticity ^ ^ |r+|+|r-| カー楕円率 10 Kerr rotation angle, elliptical index complex Kerr rotation angle x ΦK=θK+iηK ηK=r /R r z R = R+ + R- y R r = R+ - R①Kerr rotation angle :difference of phase shift 位相差 ②Kerr ellipticity :difference of reflectivity 反射率の違い 11 Kerr rotation and Magnetization It is known that ΦK ∝ M ⇔ θK∝M ηK∝M Kerr rotation angle is proportional to Magnetization. It is called “Magnetic Kerr effect”. 12 Measurement configuration Ti:sapph LASER (femto sec. pulse) photodiode to amplifier target delay stage PEM polarizer probe line pump line probe pulse pump pulse delay time target ⇒ relaxation process can be measured 13 In this paper… complex Kerr rotation Ψ=Ψ’+ iΨ’’ Ψ’: Kerr rotation angle Ψ’’: ellipticity ⊿Ψ=Ψ – Ψ0 Ψ0: original Kerr effect value ⊿Ψ’/Ψ’=⊿Ψ’’/Ψ’’~⊿M/M 14 Result A Comparison of the induced ellipticity (⊿ψ’’/ψ0’’, open circles) and rotation (⊿ψ’/ψ0’, filled diamonds) as a function of pump-probe delay time. It is strange that the changing of the both ratio which don’t same reaction if it is because of magnetism. 15 Result B 0ps 1ps 0ps 200ps delay (a)(b) dependence on the applied field Instantaneous decrease of ΔΨ’’ doesn’t relate to applied field. 16 Result C Pay attention to the scale of y. 0ps 1ps 0ps 200ps delay (c)(d) Temperaure dependence at 4.6nm and no applied field. (d) is well explained by a thermal softening of the effective magnetic potintial. 17 Summary ☆ An instantaneous demagnetization is unlikely. ☆ Rough estimate of the spin relaxation is 0.51ps, and may be explained by a highly efficient spin-lattice relaxation. ☆ We should pay attention to the Kerr effect which is not always the reaction of magnetism. 18 19 Measurement method 20 Argument for ultrafast No H dependence and only a relatively weak T and dNi dependence. ↓ state filling effects may well account for the initial response in the TRMOKE experiments. 21 Argument for subnano signal Surprisingly appeared after 30ps. strong dependence on applied field. ↓ This can identified the oscillations as a precession of M. An intuitive illustration of the process is found by solving the Landau-Lifshitz-Gilvert equation in the limit of weak damping. 22 Calculation N±=n±+iκ± N: complex refractive index n: refractive index κ: extinction coefficient 屈折率 複屈折率 消光係数 α±=2ωκ±/c α: absorption coefficient ω: frequency c: speed of light 吸収係数 周波数 ηF=ωΔκ/2c 光速 (=r /R) ηF: Faraday elliptical index r ファラデー楕円率 R = R+ + R- R r = R+ - R23 TRMOKE measurement probe light (pulse laser) pump light (pulse laser) 24 Kerr effect and Magnetization tanΦK= εxy cosψ0 = ――――――――――――――― ――――――――――――――― √εxx(cosψ0+√εxx cosψ2)√εxx(cosψ2+√εxx cosψ0) ※polar Kerr effect xx xy 0 ~ yx yy 0 0 0 zz permittivity 誘電率 εij = εij(M) ⇒ change of Kerr effect depends on magnetization. 25 Result D (e)(f) Ni thickness dependence at 300K and 2800Oe(e) and 0Oe(f). With in a couple of picoseconds the excess energy rapidly diffuses out of the Ni film. 26 ☆ On about 100ps time scale, they have observed optically induced spin movement. 27
© Copyright 2025 ExpyDoc