Oct. 24, 2011 DCEN2011 Experimental project for production of neutron-rich nuclei by multinucleon transfer reaction (KISS project) Y.X. Watanabe (KEK) for KISS collaboration Collaborators KEK RIKEN K.U. Leuven H. Miyatake, S.C. Jeong, H. Ishiyama, N. Imai, Y. Hirayama, K. Niki, M. Okada, M. Oyaizu, Y.X. Watanabe M. Wada, T. Sonoda, Y. Ito, Y. Matsuo P. Van Duppen, Y. Kudryavsev, M. Huyse 1 Astrophysical nucleosysnthesis by r-process H. Grawe et al., Rept. Prog. Phys. 70 (2007)1525. N=126 N = 126 (Waiting point) Z N = 82 Nuclear characteristics (T1/2, Sn, …) Better understanding of r-process scenario Fe N A half of elements heavier than Fe is • Actual considered to ber-process producedpath by rapid Astrophysical Nn(r-process) -T condition neutron •capture process Lifetime measurements around N=126 → Astrophysical environments of r-process • Duration time passing through waiting point • Actinide element production rate 2 Lifetime measurements around N=126 nuclei atomic number 83 209Bi 82 204Pb 206Pb 207Pb 208Pb 81 203Tl 205Tl 207Tl 198Hg 199Hg 200Hg 201Hg 202Hg 204Hg 206Hg 5×108 years ≤ T1/2 205Au 30 days ≤ T1/2 < 5×108 years 80 196Hg 79 197Au 78 194Pt 77 193Ir 203Ir 76 192Os 202Os 195Pt 196Pt 198Pt 204Pt 75 201Re 74 200W 10 minutes ≤ T1/2 < 30 days T1/2 < 10 minutes unknown 116 117 118 119 120 121 122 123 124 125 126 neutron number • five-year project since FY2010: Lifetime measurements of N=126 nuclei • Multinucleon transfer (MNT) reaction to access N=126 nuclei C.H. Dasso et al., Phys. Rev. Lett. 73 (1994) 1907. V. Zagrebaev and W. Greiner, Phys. Rev. Lett. 101 (2008) 122701. L. Corradi et al., J. Phys. G: Nucl. Part. Phys. 36 (2009) 113101. • From 203Ir down to 200W by 136Xe+198Pt MNT reaction 3 KEK Isotope Separation System (KISS) @ RIKEN Detection system - 3 detection stations - Tape-transport system - Multi-layered plastic scintillators - Ge detectors - Lifetime measurements - b-decay spectroscopy Focusing chamber - Electric-Q triplet - Electric deflector - Slit - Monitors Extraction chamber - Electric lens - Monitors ISOL (Ion Separator On-Line) - Electric-Q doublet - Magnetic dipole - Magnetic-Q doublet Gas catcher system - Target (iso-pure 198Pt) - Gas cell (Ar gas) - Laser resonance ionization - SPIG (SextuPole Ion Guide) 4 MNT reactions Points of project Aimed reaction channels are very rare. • Estimation of Absolute cross sections Isotopic distribution are very important subjects from theoretical and experimental point of view • Small production yields as well as short lives Gas catcher system Efficient collection Fast extraction Low background detection system → Efficient measurements • A lot of contaminants Laser resonance ionization → Isotopic separation (Z) ISOL → Mass separation (A) Gas catcher system — Laser resonance ionization + ISOL — P. Van Duppen, Nucl. Instrum. Meth. B126 (1997) 66. Yu. Kudryavtsev et al., Nucl. Instrum. Meth. B267 (2009) 2908. Ar gas SPIG (SextuPole Ion Guide) Gas cell filled with 0.5 atm. Ar gas gas flow Laser resonance ionization (Z selection) + + + Beam diameter : ̴ f1 mm emittance : ̴ 10p mm · mrad + ISOL (A separation) 198Pt 136Xe 9 MeV/A 2nd chamber 6×10-2 Pa TMP 1600 L/s Ion source chamber 37 Pa Screw Pump 175 L/s VRF VSPIG V0 ̴ 60 kV Extraction chamber 10-5 Pa TMP 1500 L/s ̴ Separations of Z and A are achieved by laser resonance ionization and ISOL, respectively. 6 Gas cell design - Efficient collection and rapid extraction - f10 cm 3 cm (mm) Ar gas 0.5 atm. Cross-sectional view of stopping distribution (202Os fragments) extracted yields (a.u.) Calculated transport time profile 160 120 80 40 0 200 0 198Pt 0 1 2 3 4 5 cm target 136Xe beam ion collector exit hole electrode (f1 mm) Stopping efficiency : estop = 87 % Simulation by hydrodynamic calculations survival probability Ar gas 800 1000 1200 1400 Mean transport time = 253 ms Transport efficiency : etra = 56% laser laminar flow 600 transport time ( msec ) (mm) Top view of gas cell 400 Evaluated survival probabilities of radioactive nuclei 1.0 0.8 0.6 0.4 0.2 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 half-life (sec) Survival probability : esur = 72% 7 (T1/2 = 500 msec) Laser resonance ionization - Element selection Schematic diagram of laser system setup Frequency tunable dye lasers dye laser ScanMate2E excimer laser LPX240i excimer laser LPX240i dye laser FL3002 atomic energy levels (extracted fragment) autoionizing state (AIS) l2 laser Intermediate state laser l1 Gas cell l2 Combination of two laser wavelengths for ionization is intrinsic to each element ionization EI Ex l1 g.s. Z selection Stable isotopes (Z = 69–78) l1 : 210 – 450 nm l2 : 350 – 660 nm l1 and l2 tuning for the most efficient ionization-schemes of radioactive isotopes Detection station Ge detectors for X rays (eX = 60% for 70 keV X-ray) Detection system Tape transport system 200W : production rate = 0.11 pps ~1 × 104 particles/day Plastic scintillators for b rays (eb = 80%) b-decay detection rate: ~160 counts/day Lifetime with 10% error 3rd 1st 2nd Limitation of lifetime measurements T1/2 (predicted by KUTY) Au 1 day Pt Ir Ge detectors for g rays (eg = 20% for 500 keV g-ray) Re Beam-on/off time-sequence 1st beam station on beam off switch 2nd beam station on 0.5 s tape movement (50cm) beam off beam on Ton = T1/2 × 2 Toff = T1/2 × 3 beam off beam on switch switch 3rd beam beam off station on beam off beam on 200W W Ta waiting nuclei Toff Ton 1h Os Hf Lu Yb beam off 120 121 122 123 124 125 126 N 1 min 1s 0.1 s 10 ms 9 Multinucleon transfer (MNT) reaction 64Ni (6.1 MeV/A) +238U L. Corradi et al., Physical Review C59 (1999) 261. projectile-like fragments -5p -6p Experimental data -4p -3p -2p -1p 0p 6n pick-up Calculations (GRAZING code) A. Winther, Nuclear Physics A572 (1994) 191; A. Winther, Nuclear Physics A594 (1995) 203. • Rather large cross sections (~1 mb) for 6p-stripping channels • Up to 6n-pick-up channels for pure neutron transfer (0p) 10 Production distribution @ 7 MeV/A s (mb) 104 s (mb) 104 10 198Pt 1 78 10-1 76 10-2 114 116 118 120 122 124 126 Neutron number 136Xe+208Pb 82 80 78 76 74 @ 7.3 MeV/A 208Pb 80 10-4 10-4 114 116 118 120 122 124 126 Neutron number 10-2 10-3 208Pb 10-4 s (mb) 104 103 102 10 10-3 10-1 76 82 102 10-2 1 114 116 118 120 122 124 126 Neutron number 103 10-1 10 198Pt 78 s (mb) 104 1 102 74 10-3 74 Atomic number evaporation evaporation Atomic number Atomic number 102 80 103 82 103 82 Atomic number 136Xe+198Pt 80 78 76 74 114 116 118 120 122 124 126 Neutron number 10 1 10-1 10-2 10-3 10-4 11 Excitation functions and yields Excitation functions for production of N = 126 isotones Expected yields for N = 126 isotones 102 202Os 201Re 10-2 200W 10-3 199Ta 10-4 198Hf 10-5 10-6 202Os 10 197Lu 5 6 7 8 9 10 11 12 13 Elab (MeV/A) s ~ 0.1 mb for 202Os s ~ 1 mb for 200W calculated by GRAZING code (http://personalpages.to.infn.it/~nanni/grazing) Yield (pps) cross section after evaporation (mb) 10-1 1 10-1 200W Measurement limit 10-2 10-3 10-4 10-5 136Xe : 9 MeV/A, 2 pnA 198Pt : 12 mg/cm2 196 197 198 199 200 201 202 203 204 Mass (A) 5.0 pps for 202Os 0.1 pps for 200W 12 beam 198Pt target MNT with RIB 10 83 82 81 80 79 78 77 76 75 74 73 72 71 198Pt Atomic number 83 82 81 80 79 78 77 76 75 74 73 72 71 -5 -10 -15 -20 -25 116 117 118 119 120 121 122 123 124 125 126 144Xe 0 beam Atomic number 5 -30 5 0 -5 -10 -15 -20 -25 Neutron number 10 208Pb 5 0 -5 -10 -15 -20 -25 -30 Neutron number 10 116 117 118 119 120 121 122 123 124 125 126 target 83 82 81 80 79 78 77 76 75 74 73 72 71 Neutron number 198Pt 208Pb 116 117 118 119 120 121 122 123 124 125 126 -30 Atomic number Atomic number 136Xe 83 82 81 80 79 78 77 76 75 74 73 72 71 10 208Pb 5 0 -5 -10 -15 -20 -25 116 117 118 119 120 121 122 123 124 125 126 Neutron number -30 Atomic number 136Xe+198Pt @ 7 MeV/A + 198Pt : Cross sections s (mb) 104 82 103 80 102 198Pt 78 10 1 76 10-1 74 10-2 72 10-3 10-4 118 120 122 124 126 128 130 Neutron number 144Xe+198Pt Atomic number 144Xe @ 7.2 MeV/A s (mb) 104 82 103 80 102 198Pt 78 10 1 76 10-1 74 10-2 72 10-3 10-4 118 120 122 124 126 128 130 Neutron number 14 140, 144Xe + 198Pt : Yields Expected yields of N=126 isotones (E~9 MeV/A, optimized target thickness) Expected beam intensities of Xe isotopes (Proton-induced fission of U at the total fission rates of 1014 Hz) 104 1011 Beam intensity (pps) e = 0.01 108 107 144Xe 106 102 Yield (pps) 140Xe 109 Measurement limit 105 104 103 136 138 140 142 144 146 Mass (A) 198Hf, waiting nuclei 1 144Xe+198Pt 10-2 10-4 10-6 194 (Er) 196 (Yb) 198 200 (Hf) (W) Mass (A) 202 (Os) 204 (Pt) one of the waiting nuclei, would be accessed by using RIB 140Xe 15 Understanding of MNT reactions 58Ni + 208Pb ( L. Corradi et al., Phys. Rev. C66 (2002), 024606. ) Isotopic distributions of PLFs (proton stripping channels) calculation -6p -5p -4p 50 60 50 60 50 60 50 60 -3p -2p -1p 0p 50 60 50 60 50 60 Mass number 50 60 50 60 50 60 50 60 50 60 50 60 Mass number 50 60 50 60 50 60 50 60 50 60 50 60 Mass number 50 60 50 60 Independent single-nucleon transfer modes + one pair transfer mode + particle evaporation For better description Absolute cross sections ← Pair transfer Isotopic distributions ← Energy dissipation (Evaporation) 16 Experiment with VAMOS at GANIL 198Pt (1.3 mg/cm2) VAMOS EXOGAM ~ grazing angle 12 (or 11) clovers Suppression shield configuration B with full Compton suppression TLF g-rays ~500 keV total photo-peak efficiency ~10% • MWPC • Drift Chambers 2 • Ionization Chamber • Silicon Wall PLF Trajectory Path length, Angles, Br Velocity Total kinetic energy Mass, Atomic number, Charge 17 Cross section measurements for 136Xe + 198Pt Cross sections to produce PLFs and TLFs by MNT reactions of 136Xe+198Pt s (mb) PLF s (mb) TLF 4p pick-up 198Pt 136Xe 3p pick-up g-transitions are known (Z=75~77) Calculated by GRZAING code ( A. Winther, program GRAZING, http://personalpages.to.infn.it/~nanni/grazing ). • PLF : fragments are detected by VAMOS (s > 1 mb ↔ 4-proton pick-up channels) • TLF : g-rays are detected by EXOGAM (s > 10 mb ↔ 3-proton pick-up channels) Unknown g-decay scheme Systematic tendency of gamma transitions over isotopic chains New isotope 202Os 18 Summary • Investigation of astrophysical environment of r-process Lifetime measurements for nuclei around N=126 • Nuclear production by MNT reactions of 136Xe+198Pt Rare events, Large contaminants • KEK Isotope Separation System (KISS) at RIKEN Gas catcher system : Efficient collection, Fast Extraction Laser resonance ionization + ISOL : Z & A separation Low-background detection system : 10% error for 200W • Nuclear production by MNT reactions with neutron-rich RIB 198Hf, • one of waiting nuclei, would be accessed by using RIB 140Xe Better description of MNT reactions Pair transfer, Energy dissipation Absolute cross sections and isotopic distributions will be measured by VAMOS at GANIL for 136Xe+198Pt system 20 Q-value 21 Contaminations + 198Pt 198Pt 202Os Isobaric distribution (A=202) s (mb) s (mb) atomic number 136Xe ~99.7% contaminations 202Os N=126 neutron number ~0.3% atomic number Z and A separations are essential for the lifetime measurements of rare channel products. 22 Kinematic condition for 202Os 198Pt 136Xe 9 MeV/A 202Os ~65° 12 mg/cm2 Large and wide emission angle ~10° Energy distribution Yield (a.u.) Yield (a.u.) Angular distribution Low energy, wide energy spread ~< 0.5 MeV/A Angle ( degree ) Energy ( MeV/A ) It would be difficult to separate and collect efficiently by using a spectrograph. 23 Total efficiency of gas catcher system Total efficiency = estop × etrans × esurv × eLIS × eSPIG Total efficiency survival = transport = stopping 0.17 0.9 6.8% for 202Os (T1/2 = 2.38 s predicted by KUTY) 5.0% for 200W (T1/2 = 423 ms predicted by KUTY) half-life (sec) KUTY : T.Tachibana, M. Yamad, Proc. Inc. Conf. on exotic nuclei and atomic masses, Arles, 1995, p763. 24 Time schedule FY FY FY FY FY FY Gas-catcher system will be installed in this March Off-line test of laser resonance ionization is in progress Mass separator will be installed in the early months of the next FY Construction, R&D Measurements (136Xe+198Pt) 25 R&D for laser resonance ionization Pump lasers : Excimer laser (Lambda Physik LPX240i) 100 mJ/pulse @ 200 Hz Frequency tunable dye lasers (Lambda Physik FL3002 l2 : 10mJ/p, ScanMate2E+SHG l1 : 1mJ/p) Channeltron for secondary electron detection Ions FL3002 for VIS. ScanMate2E for UV, l1 FL3002 for VIS., l2 Electrode ~ 350 V/cm Control PC Filament : Ni, Ir… Ionization chamber ( Vacuum ) Wave meter Excimer lasers Photo detector for timing tuning Power meter 26 Rhenium ionization ( Z = 75, A=185, 187 ) 800 700 1st step 417.253nm fix 2nd step scan AIS 600 Ionization energy : Ei = 63181.6 cm-1 ( = 7.83 eV) 融点:3459K AIS Ei l2 < 655.78 nmで IPを越える 6F0 (J=7/2) Ex = 47932.55cm-1 l1 = 208.6265 nm (SHG) l0 = 417.2530 nm (fundamental) 6S (J=5/2) AIS 649.84 nm 652.22nm 654.64nm 500 400 300 Ionization limit 200 100 0 646 648 650 500 652 654 l2 (nm) 656 658 660 1st step scan w/o 2nd step 1st step 208.6265nm 400 300 200 100 417.20 417.22 417.24 417.26 l0 (nm) 417.28 417.30 27 Power dependence 1st stepのパワー依存性測定 2nd stepのパワー依存性測定 2nd step 2.2mJ/p(飽和している) 1st step 417.253nm, 28.4mJ/p (飽和している) l1 power (mJ/p@f10mm) l2 power (mJ/p@f10mm) 2nd step 2nd step 2nd step l1 power (1014 photon/cm2 pulse) 100mJ/p(<1mJ/p), 2nd step l2 power (1016 photon/cm2 pulse) 2 mJ/p(<10mJ/p) l1 = 208.6265nm, l2 = 652.218nmでイオン化するのが効率良い。 ガスセル入り口(f10mm)で必要なパワーは、 1st : 100mJ/p(<1mJ/p), 2nd : 2 mJ/p(<10mJ/p) 28 Iridium ionization ( Z = 77, A=191, 193 ) 1st step 417.900nm fix 2nd step scan 1000 Ionization energy : Ei = 72323.9 cm-1 ( = 8.97eV) 融点: 2739K AIS Ei l2 < 408.74 nmで IPを越える 800 AIS 600 AIS 400 Ionization limit 200 0 408 408.5 10 (J=11/2) Ex = 47858.45cm-1 l1 = 208.950 nm (SHG) l0 = 417.900 nm (fundamental) 4F (J=9/2) 408.186nm 408.217nm 408.266nm 408.434nm 409.520nm 400 409 l2 (nm) 409.5 410 1st step scan w/o 2nd step 1st step 208.950 nm 300 200 100 0 417.80 417.84 417.88 417.92 l0 (nm) 417.96 29 Power dependence 1st 2nd stepのパワー依存性測定 stepのパワー依存性測定 l2 power (mJ/p@f10mm) l1 power (mJ/p@f10mm) 40 0 120 80 160 800 2nd step 408.434nm (1.15mJ/p) 600 0 1 2 3 4 5 6 7 8 2nd step 1200 408.217nm st 1000 (1 17mJ/p) 9 10 2nd step 408.434nm (1st 17mJ/p) 800 600 400 0 0.4 0.8 1.2 1.6 200 0 2.0 l1 power (1014 photon/cm2 pulse) 100mJ/p(<1mJ/p), 2nd step 408.217nm (1st 3mJ/p) 400 2nd step 408.217nm (1.18mJ/p) 200 0 1400 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 l2 power (1016 photon/cm2 pulse) 3 mJ/p(<10mJ/p) 1st : 208.950nm, 2nd : 408.434nmでイオン化するのが効率良い。 ガスセル入り口(f10mm)で必要なパワーは、 1st : 100mJ/p(<1mJ/p), 2nd : 3mJ/p(<10mJ/p) 今後、W (Z=74), Ta (Z=73), Os (Z=76)等の共鳴イオン化様式を探索予定 30 E2, E3実験室におけるKISS設置予定(上から見た図) 絶縁トランス(<100kV) 高電圧プラットホーム(~60kV) t50mm絶縁シート 高電圧防護柵(予定) 一次ビームライン整備 ゲートバルブ 2011年度内希望 一次ビームモニターチャンバー 絶縁ダクト Ar gas セル50kPa@高電圧 EQダブレット Dipole Mag. E2 E3 レーザー光 J3 → E2 2010年度3月設置予定 高電圧プラットホーム Ar gas セルハウジング真空槽 Ar gas セル 引出しチャンバー 2011年度設置予定 高電圧防護柵 引出しチャンバーより下流ライン J3にレーザ装置(E2の地下) 差動排気用真空槽 40Pa@高電圧 引出しチャンバー MQダブレット 測定用チャンバー 31
© Copyright 2024 ExpyDoc