Atomic orbital & Hydrogen-atom wave function 原子軌道と水素原子波動関数 Derivation of hydrogen-atom wave function @ Schrödinger eq. of H atom(水素原子のシュレディンガー方程式) Derivation of hydrogen-atom wave function @ Schrödinger eq. of H atom(水素原子のシュレディンガー方程式) convert to the atomic unit(原子単位へ変換する) convert from the xyz to the rθφ(polar) coordinate(xyz座標から極座標へ変換する) separate the variables of ( r, θ, φ) (変数分離する) @ Solution(解) 1 ψn,l,m (r,θ,φ) = Rn,l (r) x Yl,m (θ,φ) , E = - — 2 2n Hydrogen-atom wave function Spherical Harmonics (水素原子波動関数) (球面調和関数) Radial wave function (動径波動関数) where Energy (エネルギー) n = 1, 2, 3, . . . l = 0, 1, 2, . . . , n-1 m = 0, ±1, ±2, . . . , ±l eliminate a imaginary by linear combination(足し算引き算して虚数を消去する) @ realized Hydrogen-atom wave function (実数化した水素原子波動関数) real ± ψn,l,m (r,θ,φ) = Rn,l (r) x Yl,m (θ,φ) where Realized Spherical Harmonics (実数化した球面調和関数) n = 1, 2, 3, . . . l = 0, 1, 2, . . . , n-1 m = 0, 1, 2, . . . , l Load to the Atomic Orbitals real ψn,l,m (r,θ,φ) = Rn,l (r) x ± Yl,m (θ,φ) l=0 n=1 R1,0 r where θ π Y0,0 l=1 n = 1, 2, 3, . . . l = 0, 1, 2, . . . , n-1 m = 0, 1, 2, . . . , l 2π φ n=2 R2,0 R2,1 Y-1,1 Y1,0 Y+1,1 Y-2,1 Y2,0 Y+2,1 l=2 n=3 R3,0 R3,1 R3,2 Y-2,2 Y+2,2 Load to the Atomic Orbitals real ψn,l,m (r,θ,φ) = Rn,l (r) x ± Yl,m (θ,φ) where θ n=1 R1,0 n = 1, 2, 3, . . . l = 0, 1, 2, . . . , n-1 m = 0, 1, 2, . . . , l π Y0,0 3D representation r 2π φ n=2 R2,0 R2,1 Y-1,1 Y1,0 Y+1,1 Y-2,1 Y2,0 Y+2,1 n=3 R3,0 R3,1 R3,2 Y-2,2 Y+2,2 This transformation is similar to that of the world map. (この変形は世界地図の変形に似ている) l=2 : d orbital dz2 z2 conversion Y2,0 (r,x,y,z) orbital Load to the Atomic Orbitals real ψn,l,m (r,θ,φ) = Rn,l (r) x ± Yl,m (θ,φ) n=1 R1,0 + Y0,0 r n=2 R2,0 where n = 1, 2, 3, . . . l = 0, 1, 2, . . . , n-1 m = 0, 1, 2, . . . , l + Y-1,1 R2,1 n=3 R3,0 R3,1 R3,2 + - + - Y-2,2 + + - Y-2,1 + + Y2,0 + Y+1,1 Y1,0 + + - + + - + Y+2,1 + - + - Y+2,2 + Load to the Atomic Orbitals real ψn,l,m (r,θ,φ) = Rn,l (r) x ± Yl,m (θ,φ) ± Yl,m (r,x,y,z) n=1 R1,0 s r n=2 R2,0 R2,1 py pz px dyz dz2 dzx n=3 R3,0 R3,1 R3,2 dxy dx2-y2 s orbital Rn,l (r) R1,0 x ± Yl,m (r,x,y,z) = real ψn,l,m (r,x,y,z) n=1 1s R2,0 n=2 x s = 2s n=3 R3,0 3s p orbital Rn,l (r) x ± Yl,m (r,x,y,z) real ψn,l,m = (r,x,y,z) l=1 n=2 pz R2,1 n=3 R3,1 x py = 2pz 3pz 2py 3py px 2px 3px d orbital Rn,l (r) x ± Yl,m (r,x,y,z) = real ψn,l,m (r,x,y,z) 3dz2 l=2 dz2 dyz n=3 R3,2 3dyz x dzx dxy dx2-y2 = 3dzx 3dxy 3dx2-y2 Atomic Orbitals and Energies of the Hydrogen Atom (水素原子の原子軌道とエネルギー) Atomic Orbitals and Energies of the Hydrogen Atom 1 E=-— 2n2 l=0 l=1 l=2 l=3 ( N shell ) 0 n=4 n=3 ( M shell ) m=0 n=2 m=±1 m=±2 m=0 m=±1 m=±2 m=±3 ( L shell ) m=0 m=±1 ψn,l,m (r,θ,φ) principal quantum number n = 1, 2, 3, . . . (主量子数) orbital angular momentum quantum number l = 0, 1, 2, . . . , n-1 (軌道角運動量量子数) magnetic quantum number m = 0, ±1, ±2, . . . , ±l n=1-0.5 ( K shell ) (磁気量子数) m=0 Atomic Orbitals and Energies of the Hydrogen Atom 1 E=-— 2n2 n=4 n=3 4dx2-y2 4fz(5z2-3r2) 4dxy 4s 4pz 4px 4py 4dz2 4dzx 4dyz 3s 3pz 3px 3py 3dz2 3dzx 3dyz 3dxy 3dx2-y2 2s 2pz 2px 2py n=2 4fx(5z2-r2) 4fy(5z2-r2) ψn,l,m (r,θ,φ) real ψn,l,m (r,x,y,z) 1s n=1 4fz(x2-y2) 4fxyz 4fx(x2-3y2) 4fy(3x2-y2) Atomic Orbitals and Energies of the Hydrogen Atom E= real 1 ψn,l,m (r,x,y,z) -— 2n2 4s 4pz 4px 4py 4dz2 4dzx 4dyz 4dx2-y2 4fz(5z2-3r2) 4dxy n=4 n=3 4fx(5z2-r2) 4fy(5z2-r2) n=2 3dxy 2py n=1 4fz(x2-y2) 4fxyz 1s 2pz 4fx(x2-3y2) 4fy(3x2-y2) 3dyz 3dz2 3dzx 3py 3pz 3px 2px 2s 3s 3dx2-y2 4s 4fy(3x2-y2) 4py 4pz 4px 4dxy 4dyz 4dz2 4dzx 4dx2-y2 4fxyz 4fx(5z2-r2) 4fz(5z2-3r2) 4fy(5z2-r2) 4fz(x2-y2) 4fx(x2-3y2) 4s 2py 2pz 2px 3py 3pz 3px 4py 4pz 4px 3dyz 3dz2 3dzx 3s 2s 3dxy 3dx2-y2 1s 4fy(3x2-y2) 4dxy 4dyz 4dz2 4dzx 4dx2-y2 4fxyz 4fx(5z2-r2) 4fz(5z2-3r2) 4fy(5z2-r2) 4fz(x2-y2) 4fx(x2-3y2)
© Copyright 2024 ExpyDoc