前回のまとめ Lagrangian を決める基準 対称性 局所性 簡単な形 変換 (Aq)I =D(A)IJ qJ 表現 D(AB)IK =D(A)IJD(B)JK [Xm,Xn]=ifmnlXl 無限小変換 A=eiaX =1+iaX+O(a2), D(A) =eiad(X) =1+iad(X)+O(a2), [d(Xm), d(Xn)]=ifmnld(Xl) 場の変換 (Af )i (Ax ) =D (A)ij fj (x) 時空の変換 x' =Ax 状態の変換 U (A) = e iau ( X ) = 1 iau(X ) O (a 2 ) [J i , J j ] = iijkJ k 回転群O(3) generator J i (i = 1,2,3) 既約表現は半整数 j で指定される。 Lorentz群 SO(3,1) generator J i K i (i = 1,2,3) 既約表現は半整数 ( j ( ), j ( ) ) で指定される。 scalar field f (x ) ( j ( ) , j ( ) ) = (0,0) 1 1 2 2 1 2 Lagrangian密度 L = ( f ) m f f 4 2 2 4! 自由scalar場の量子化 scalar 場 f 要請 (i) Lorentz不変性 (ii) f → fで不変 (iii) f の2次まで 1 1 2 2 Lagrangian 密度 L = f f m f = = ( 0 , ) 2 2 x 2 2 (f ) f Lagrangian L = Ldx = (1, 2 , 3 ) 運動方程式 0 (L / ( 0f )) = L / f (L / ( f )) = L / f 2f で微分 これを 2 f = m f f f = m 2f Klein Gordon方程式 正準共役運動量 (x ) = L / f(x ) = f pI = L / q I [q I , pJ ] = i IJ 正準交換関係 =量子条件 [f (x ), (y )] x =y = i (x y ) (x = (x 0 , x ),y = (y 0 , y )) Hamiltonian dx L H = f 1 2 2 2 2 H = (f ) m f dx F = i[H , F ] 2 0 ( 0 ) Klein Gordon 方程式 f = m f f = m f 2 2 2 = m f f f 正準交換関係 =量子条件 [f (x ), (y )] x =y = i (x y ) Hamiltonian 1 2 2 H = (f ) m 2f 2 dx 2 0 ( 2 0 ) 2 2 f f = m f Klein Gordon方程式 量子条件 [f (x ), (y )] x =y = i (x y ) Hamiltonian 1 2 2 2 2 H = (f ) m f dx 2 0 ( 0 ) Klein Gordon 方程式 f = m f 2 ikx 0 解 f (x ) = e とおく (kx = k0x kx) k0 2 k 2 = m 2 k 0 = m 2 k 2 2 2 f f = m f xとxxのf 混じる Normal modeで書く 負のenergy! f は状態でなく 演算子なのでOK dkikx ikx 2 † ikx2 = m k ) a 一般解 f (x ) = e (2,)e3 2E (a E ke ke 0 kx x=0Ex で微分 kx 独立解 d k ikx † ikx (ak e ak e ) E = m 2 k 2 (x ) = f(x ) = 3 ( 2 ) 2 i 逆に解く kx = Ex 0 kx E = m 2 k 2 量子条件 0 kx = Ex kx [f (x ), (y )] x =y = i (x y ) ikx 0 0 Hamiltonian 1 2 2 2 2 H = (f ) m f dx 2 ( ) Klein Gordon 方程式 f = m f 2 2 2 f f = m f ipy e dy = 2 ( p ) dk1 † ikx ikx ik'xdx e e ( a a ) e ∫Ef f (x ) == k k (2 )3 2E eiEt (2)3 (kk' ) eiEt dk 1 ikx † ikx ik'x ( a e a )eik'xd3x (x)e) = fdx (x ) = ∫ i (x k ke 3 iEt iEt ( 2 ) 2 i e e (2)3 (kk' ) 逆に解く ikx iEt a = e dx ( ) i (x ) k e Ef (x ) E = m 2 k 2 量子条件 0 kx = Ex kx [f (x ), (y )] x =y = i (x y ) (x )eik'xdx 0 0 Hamiltonian 1 2 2 H = (f ) m 2f 2 dx 2 ( ) Klein Gordon 方程式 f = m f 2 ikx 0 解 f (x ) = e とおく (kx = k0x kx) k0 2 k 2 = m 2 k 0 = m 2 k 2 2 2 f f = m f xとxxのf 混じる Normal modeで書く 負のenergy! dk1 † ikx ikx ik'x Ef (x )e f (x ( a a ) f は状態でなく dx) == e ∫一般解 k iEt ke 3 (2 ) 2E e 演算子なのでOK x0で微分 dk 1 ikx † ikx ik'x ( a e a ) E = m 2 k 2 (x)e) = fdx (x ) = i (x ∫ k ke 3 iEt ( 2 ) 2 i e 逆に解く a k = e iEt (Ef (x ) i (x )) e ikx kx = Ex 0 kx dx E = m 2 k 2 量子条件 0 kx = Ex kx [f (x ), (y )] = i (x y ) x 0 =y 0 Hamiltonian 1 2 2 2 2 H = (f ) m f dx 2 ( ) Klein Gordon 方程式 f = m f 2 ikx 0 解 f (x ) = e とおく (kx = k0x kx) k0 2 k 2 = m 2 k 0 = m 2 k 2 2 2 f f = m f xとxxのf 混じる Normal modeで書く 負のenergy! dk † ikx ikx ( a a ) f は状態でなく e f (x ) = 一般解 ke (2 )3 2E k 演算子なのでOK x0で微分 dk ikx † ikx = ( a e a ) E = m 2 k 2 ( x ) = f ( x ) ke (2 )3 2i k 逆に解く 0 ikx iEt a e dx = ( ) i (x ) k e Ef (x ) [ak ,a ] = (2 )3 2E (k k ' ) = [ eiEt ∫ (Ef(x)i(x))eikxdx , eiE't ∫ (E'f(y)i(y))eik'ydy ] = ∫ ( i E i(xy) i E' i(xy) ) eiEt eiE't eikx eik'y dx dy = 2 EE '(2 )3 (k k ' ) † k' kx = Ex kx 量子条件 [f (x ), (y )] x =y = i (x y ) Hamiltonian 1 2 2 2 2 H = (f ) m f dx 2 0 ( ipy e dy = 2 ( p ) 0 ) Klein Gordon 方程式 f = m f 2 ikx 0 解 f (x ) = e とおく (kx = k0x kx) k0 2 k 2 = m 2 k 0 = m 2 k 2 2 2 f f = m f xとxxのf 混じる Normal modeで書く 負のenergy! dk † ikx ikx ( a a ) f は状態でなく e f (x ) = 一般解 ke (2 )3 2E k 演算子なのでOK x0で微分 dk ikx † ikx = ( a e a ) E = m 2 k 2 ( x ) = f ( x ) ke (2 )3 2i k 逆に解く 0 ikx iEt a e dx = ( ) i (x ) k e Ef (x ) [ak ,a ] = (2 )3 2E (k k ' ) ak 0 = 0 真空状態 0 Fock space ak1† ak2† akn† 0 † ak 生成演算子 ak 消滅演算子 † k' kx = Ex kx 量子条件 [f (x ), (y )] x =y = i (x y ) Hamiltonian 1 2 2 2 2 H = (f ) m f dx 2 0 ( dk † † E (ak ak akak ) / 2 Hamiltonian H = 2 (2 ) 2E 0 ) Normal mode! Lagrangian をLorentz不変に書くため既約表現の場を使う 前回のスライドより Lorentz群の既約表現は ( j ( ) , j ( ) ) で指定される。 ( j ( ) , j ( ) ) = ( 0 , 0 ) scalar field f (x ) d (J i ) = 0 d (K i ) = 0 d(J i() ) = 0 (1/2, 0 ) right-handed Weyl spinor field R (x ) d(J i() ) = i / 2 d(J i() ) = 0 d (J i ) = i / 2 d(Ki ) = i i / 2 ( 0 ,1/2) left-handed Weyl spinor field L (x ) d(J i() ) = 0 (1/2, 0 ) ( 0 ,1/2) (1/2,1/2) d(J i( ) ) = J i d(J i() ) = i / 2 Dirac spinor field vecrtor field d(K i ) = i i / 2 L (x ) (x ) = R (x ) d (J i ) = i / 2 V (x ) d(J i ) = J i d (K i ) = K i (1/2, 0 ) right-handed Weyl spinor field R (x ) d(J i() ) = i / 2 d(J i() ) = 0 d (J i ) = i / 2 d(Ki ) = i i / 2 ( 0 ,1/2) left-handed Weyl spinor field L (x ) d(J i() ) = 0 d(J i() ) = i / 2 d (J i ) = i / 2 d(K i ) = i i / 2 (1/2, 0 ) right-handed Weyl spinor field R (x ) d(J i() ) = i / 2 d(J i() ) = 0 d (J i ) = i / 2 d(Ki ) = i i / 2 ( 0 ,1/2) left-handed Weyl spinor field L (x ) d(J i() ) = 0 d(J i() ) = i / 2 d (J i ) = i / 2 d(K i ) = i i / 2 (1/2, 0 ) right-handed Weyl spinor field R (x ) d(J i() ) = i / 2 d (J i ) = i / 2 d(Ki ) = i i / 2 d(J i() ) = 0 ( 0 ,1/2) left-handed Weyl spinor field L (x ) d(J i() ) = 0 d(J i() ) = i / 2 d (J i ) = i / 2 d(K i ) = i i / 2 状態空間上の無限小変換演算子u(X) (Xf )i = [u(X ),fi ] = d(X )ij f j X x fi ( ) ] = (d(K ) i (x x )) [J i , ( ) ] = d(J i ) iijkx j k ( ) [Ki , () Weyl spinor 場 i i ( ) 0 0 (1/ 2,0) 表現 i ( ) ( ) (0,1/ 2) 表現 i j k † † i † [J i , ( ) ] = i ijk x ( ) [J i , ( ) ] = ( ) i ijk x j k ( ) 2 2 i i 0 [K i , ( ) ] = i i (x 0 x i ) ( ) [K i , ( )† ] = i ( )† i i (x i 0 x 0i ) ( )† 2 2 Weyl spinor 場 ( ) (1/ 2,0) 表現 ( ) (0,1/ 2) 表現 i j k † † i † [J i , ( ) ] = i ijk x ( ) [J i , ( ) ] = ( ) i ijk x j k ( ) 2 2 i i [K i , ( ) ] = i i (x i 0 x 0i ) ( ) [K i , ( )† ] = ( )† i i (x i 0 x 0i ) ( )† 2 2 Weyl spinor 場 ( ) (1/ 2,0) 表現 ( ) (0,1/ 2) 表現 i j k † † i † [J i , ( ) ] = i ijk x ( ) [J i , ( ) ] = ( ) i ijk x j k ( ) 2 2 i i 0 [K i , ( ) ] = i i (x 0 x i ) ( ) [K i , ( )† ] = i ( )† i i (x i 0 x 0i ) ( )† 2 2 Weyl spinor 場 ( ) (1/ 2,0) 表現 ( ) (0,1/ 2) 表現 i j k † † i † [J i , ( ) ] = i ijk x ( ) [J i , ( ) ] = ( ) i ijk x j k ( ) 2 2 i i [K i , ( ) ] = i i (x i 0 x 0i ) ( ) [K i , ( )† ] = ( )† i i (x i 0 x 0i ) ( )† 2 2 ( )† (0,1 / 2) 表現 ( )† (1 / 2,0) 表現 Lorentz不変な演算子 †( ) ( ) , †( ) ( ) , †( ) (0 i i ) ( ) † † † [ J , ] 例えば i ( ) ( ) = [J i , ( ) ] ( ) ( ) [J i , ( ) ] = 0 [Ki ,†() () ] = [Ki ,†() ] () †() [Ki , () ] = 0 Lorentz不変なhermite演算子 †( )i (0 i i ) () †()() †()() Lagrangian density L =†( )i (0 i i ) ( ) †( )i (0 i i ) ( ) m(†() () †() ( ) ) Lagrangian density † i † i † † = i ( ) i ( ) m ( L ( ) 0 i ( ) ( ) 0 i ( ) ( ) ( ) ( ) ( ) ) Lagrangian density L =†( )i (0 i i ) ( ) †( )i (0 i i ) ( ) m(†() () †() ( ) ) Lagrangian density † i † i † † = i ( ) i ( ) m ( L ( ) 0 i ( ) ( ) 0 i ( ) ( ) ( ) ( ) ( ) ) †() () †( ) ( ) = (†() () † † † = () () () ) () † g0 ( 0 1 ( ) ) 1 0 ( ) = i (0 i ) () i (0 i ) () i † ( ) † ( ) i † † 0 0 i i () = i ( () () ) 0 i i 0 ( ) = i †( ) †( ) 0 1 0 i ( ) i 0 i 0 ( ) 1 0 ( Dirac行列 = i g g0 ( ) Dirac spinor = () gi = †g 0 g ∂ 0 1 g = 1 0 i 0 i g = i 0 {g , g } = 2 0 ) = g Cliford algebra Lagrangian density L = (ig m) = (i m ) Lagrangian density L = (ig m) = (i m) Lagrangian density L = (ig m) = (i m ) L = (ig m) = (i m) Lagrangian density equation of motion (ig m) = 0 Dirac equation 1 2 3 1 0 i 0 5 0 1 2 3 = g = ig g g g = 1 2 3 i 0 1 0 i = [g , g ] 2 M J i0 i = 0 1 i = = [g , g ] 2 4 i 1 1 J i = ijkM jk = 2 2 0 i () i 0 i i 0 i 1 i 1 0 0 i = (J iK ) = i 2 2 0 12 K =M i J i ( ) i0 3 0 = 3 0 1 i i = 2 0 0 i i i 1 i 1 = (J iK i ) = 2 2 0 0 0 Lagrangian density L = (ig m) = (i m) 0 = (ig m)(ig m) = (2 m2 ) = ueipx (p m )u = 0 = ve ipx (p m )v = 0 u u = 2m s r u s s sr u = p m s 2 2 p = p p = m v sv r = 2m sr s s v v = p m s L = (ig m) = (i m) † = i canonical conjugate momentum Lagrangian density quantization quantization condition { a (x ), i b (y )† } |x d3p solution (x ) = (2 )3 2E p s 0 =y 0 = i (x y ) ab s ipx s† ipx ( b u e d v e ) p p s s s r† {bp ,bq } = (2 )3 2E p ( p q ) sr s r† {d p , dq } = (2 )3 2E p ( p q ) sr dp 0 = 0 bp 0 = 0 vacuum state 0 Fock space s s † † † † † † bp1 bp2 bpn dq1 dq 2 dqn 0 particle antiparticle † creation operator bp † dp annihilation operator bp dp discrete symmetry P, T, C space inversion Pb P = b s p s p P (t, x )P = g (t,x ) 0 Pdps P = dsp time reversal T bpsT = bps T (t, x )T = * g 1g 3 (t, x ) T d T = d TcT = c * s p s p charge conjugation CbpsC = dps C (t, x )C = i ( * (t, x )g 0g 2 )T CdpsC = bps CcC = c * i g 5 g g g =0 5 1 = 0 = = 0 1, = 0or 1 or, 1 = 1, 0 P 1 1 1 1 1 1 T 1 1 1 1 1 1 C 1 1 CPT 1 1 1 1 1 1 1 1 1 1 1 1 Lorentzian invariant Lagrangian density L = i m f f ig g 5f ' 5 2 G ( g ) F ( ) F ' ( g )2 G ' ( g g 5 ) 2 2 Electromagnetic field E electric field Maxwell equation E = (c = = 1) B = 0 4-dimensional description F 0 = E F E B B 0E = j E 0B = 0 = ( 0 , ) j = ( , j ) F F = j F = 0 = (0 ,) 0 B = 2 B E E = ( E , 0E B ) = ( , j ) = j B 0 B = ( 0 ,) =0 B E = (B,0B E ) 0 = ( 0 , ) E 1 F 2 v B magnetic field 0 3 = v v 2 v 3 0 v1 v2 1 v 0 : totally anti-symmetric tensor ( 0123 = 1) Electromagnetic field E electric field B magnetic field Maxwell equation E = (c = = 1) B = 0 F = j B 0E = j F =0 E 0B = 0 = ( 0 , ) 4-dimensional description = (0 ,) 0 E 0 0 A 0 B = j = ( , j ) F = (= 2A A ) F = A ( A ) E B B E 0 A = ( , A) scalar potential , vector potential A F = A A E = 0 A B = A gauge transformation A A ' = A E, B : invariant under gauge transformation v 0 3 = v v 2 v 3 0 v1 v2 1 v 0 : totally anti-symmetric tensor ( 0123 = 1) require (i) vector field A (dynamical variable) Lorentzian invariance, locality Maxwell(ii) equation (iii) gauge invariance (iv) simple interaction with the currentj 1 Lagrangian densityL = F F A j F 4 Maxwell eq. F = j F = 0 = A A F = A A gauge transformation A A ' = A E, B : invariant under gauge transformation require (i) vector field A (dynamical variable) (ii) Lorentzian invariance, locality (iii) gauge invariance (iv) simple interaction with the currentj 1 Lagrangian densityL = F F A j F 4 Maxwell eq. F = j F = 0 = A A 1 1 L = F F A j = ( A A )( A A ) A j 4 4 F L L = Euler equation ( A ) A = ( A A ) ( A A ) F Maxwell equation j F = j = A A F = 0 0 0 Quantization of free electromagnetic field A free-field Lagrangian L = ( A A A A ) / 2 canonical conjugate momentum = A A = 0 quantization condition 2 0 [A (x ), (x )] |x 0 =y 0 = i (x y ) ??? 0 gauge fixing 0 0 positive frequency part add LGF = ( A ) / 2 to L and impose the subsidiary condition A() physical = 0 physical states L LFG = A A / 2 canonical conjugate momentum = A 0 0 good! quantization condition [A (x ), (x )] |x =y = i (x y ) 0 0 eq. of motion A = 0 solution A = e ipx 2 2 2 p = ( p ) ( p ) =0 p = (k 0 0 k ) 0 1 2 3 0 = (1 = (0 = (0 = (0 0 1 0 0 0 0 1 0 0) 0) 0) 1) polarization vectors r s rs = r general solution 3 d p r r ipx r r † ipx A (x ) = ( p )a pe (p) * ap e 3 (2 ) 2E p r s† [a p , a q ] = 2E p (2 ) 3 rs ( p q ) ( vacuum state 0 a 0 =0 r k r1 † k1 Fock space a a r2 † k2 a (a p0 a p3 ) physical = 0 subsidiary condition s† a q creation operator aqs annihilation operator rn † kn ) 0 gauge invariant Lagrangian density m) L =| f igQf Af | (i gQ A 2 complex scalar f = 1 i 2 gauge transformation for matter field igQ igQf ' = e f f' = e f covariant derivative Df = f igQf Af D = igQ A まとめ 自由scalar場の量子化 1 1 2 2 Lagrangian 密度 L = f f m f 2 2 2 運動方程式 f = m f Klein Gordon方程式 正準共役運動量 = f 量子条件 [f (x ), (y )] x 1 2 2 Hamiltonian H = (f ) m 2f 2 d 3x 2 ( ) 0 =y 0 = i (x y ) dk ikx † ikx f = ( a e a ) ke 一般解 (2 )3 2E k [ak ,ak ' ] = (2 )3 2E (k k ' ) † † † † Fock space ak1 ak2 akn 0 ak 0 = 0 真空状態 0 † ak 生成演算子 ak 消滅演算子 dk † † E (ak ak akak ) / 2 Hamiltonian H = 2 (2 ) 2E ( ) 0 1 i 0 0 Dirac行列 g = g = Dirac spinor = i 1 0 ( ) = †g 0 i 0 = g Lagrangian密度 L = (i m ) 正準共役運動量 = i† Dirac equation (ig m) = 0 {g , g } = 2 a b † quantization condition { (x ), i (y ) } |x d3p solution (x ) = (2 )3 2E p 0 =y 0 = i (x y ) ab s ipx s† ipx ( b u e d v e ) p p s s s r† s 3 sr {bp , bq } = (2 ) 2E p ( p q ) , {d p , dq } = (2 ) 2E p ( p q ) s r† sr 3 particle antiparticle dp 0 = 0 bp 0 = 0 vacuum state 0 Fock space s s † † † † † † bp1 bp2 bpn dq1 dq 2 dqn 0 creation operator b p† † d creation operator p annihilation operatorbp annihilation operator d p 1 = F F Lagrangian密度L 4 Electromagnetic field 1 2 ( ) L = ( A ) gauge固定 GF physical = 0 補助条件 A 2 canonical conjugate momentum = A quantization condition [A (x ), (x )] |x 0 =y 0 = i (x y ) r s polarization vectors rs = r general solution 3 d p r r ipx r r † ipx A (x ) = ( p )a pe (p) * ap e 3 (2 ) 2E p r s† [a p , a q ] = 2E p (2 ) 3 rs ( p q ) ) ( vacuum state 0 r1 † k1 Fock space a a a 0 =0 r k r2 † k2 a (a p0 a p3 ) physical = 0 補助条件 s† a q creation operator aqs annihilation operator rn † kn 0
© Copyright 2024 ExpyDoc