『高密度アストロメトリ観測時代を迎えた21世紀の天文学』 (国立天文台、Sep. 19-20、 2007) 恒星進化の理論の現状とアストロメトリ 藤本正行 須田拓馬・勝田豊(北大理) 小宮悠(東北大理) contents 1. Parallaxes ⇒ 距離 ⇒ 光度 + spectroscopy → 恒星の半径、表面温度、質量、組成 ⇒ Age-Metallicity relation ⇒ star formation history of solar neighborhood 2. 恒星進化の理論的課題 – – Mass Loss Internal (Extra) Material Mixing ~ convective overshooting 非球対称効果(rotation, magnetic fields) 3. 銀河系の構造・進化への探査手段としての恒星 – – 惑星を持つ恒星(Planet Hoboring Stars PHS) 銀河系ハロー星(Extremely Metal-Poor Stars EMP, UMP, EMP) 1.HR diagram from Hipparcos Hyades near-by stars Model fitting (Perryman et al. 1998, A&Ap) ZAMS: Metallicity and effective temperature from high resolution spectroscopy: [Fe/H]= 0.14 Solar mixing length: l=1.64 resultant helium abundance: Y = 0.26 Isochrones: Age 625 ±50 Myr Asplund, Grevesse & Sauval . (2004) Decrease of metal abundance in solar by almost a factor of two as compared with a compilation by Anders & Grevesse (1989) Physical parameters for Evolved stars (de Silva et al 2006 A&A) Mass-metallicity relation Age-metallicity relation Color-Magnitude Diagram Star Formation History of solar neighborhood CMD of near-by stars SFR vs. Age with the evolutionary models Luminosity Function (Cignoni et al 2006 A&A) 2. 恒星進化の理論的な課題 2.1 mass loss 1) Massive Stars ⇒ Supernova neutron stars black hole 2) Intermediate- & Low-mass Stars ⇒ white dwarfs 2.1.a Mass loss from Massive Stars by the central exhaustion of helium wind mass loss Wolf Rayet WNL WC Limongi & Chieffi (2006) SN Explosions Core Mass at SNe ηcarina (binary) VY Cannis Majoris Wolf-Rayet Stars WR124 WR104 (binary) 2.1.b Low- & Intermediate mass stars -- from AGBs to PNe and to WDs Fast wind Hydrogen deficient CSPNe ~20% Born-again AGB Ignition of Very Late Thermal Pulse Super wind Wind mass loss Hydrogen is mixed and burnt by He-flash convection Non-DA (hydrogen deficient) WDs ~20% Herwig 2005, ARA$AP End of Low- and Intermediate – mass stars Cat Eye Planetary Nebulae X-ray from PNe Guerrero, Chu & Gruendl Mem. S. A. It. 76,446 (2005) Suzaku observation of BD+30°3639 Murashima, Kokubun, Makishima et al. 2006, ApJL,647, L131 村島未生、天文学会2006年春季年会講演 X-ray spectra from BD +30°3639 Large enhancement of C and Ne XIS-1 spectra background Spectra with the solar abundance ratio Fast wind ejects the matter from the Helium Flash Convective Zone Empirical Mass Loss Rates Reimers formula (1977) Nieuwenhuijen & Jager (1990) Fast wind Mass Loss Theory (Massive Stars) Radiation Pressure (Line-Driven) + Multiple Scattering eg., (A&A, 2000) may subject to Large overestimation by Clumps in Wind (Bouret etal. A&A 2005) Foullerton et al. ApJ 2006 (mass loss rate ∝d1.5) Mass Loss Theory; Cool stars Pulsation-driven wind model + Radiation Pressure on Dusts But, for Oxygen-rich Chemistry; Shortage of radiation pressure on dusts (Woitke A&A, 2006) Carbon-rich Chemistry (Watcher et al. A&A, 2002) +Superwind +AGB RGB Large Mass Loss at Later Stages Reimers formula Mira variables L 104 L , R 102 R Fast wind L 104 L , R 102 R 4 L 10 L , R 102 R (Pulsation period) R 1R Lawlor & MacDonald 2006 2.2 Mixing in Stars Current standard framework = spherical symmetry + thermal convection + chemical diffusion (mixing length theory) Rotation, magnetic fields ⇒ instabilities = turbulence ⇒ transport of Angular momentum + internal material mixing Results Surface metal pollution shifts the evolutionary track to the lower effective temperature. Polluted: Z=0.02 at interior, Z=0.04 at Surface convection 0.8Msun Z=0.04 Log (L/Lsun) Z=0.02 1.0Msun log Teff He enriched model Log (L/Lsun) 1.01 1.09M 0.90M He enriched 1.00M Basic model Z=0.04, homogeneous ZAMS for He-enriched model ZAMS for Basic model log Teff Mixing-length enlarged model 1.09M Log (L/Lsun) 1.10M 1.00M Basic model 0.98M Mixing-length enlarged ZAMS for Basic model ZAMS for Mixing-Length enlarged model log Teff Age of changed free-parameter models [Gyr] Ages of basic model and other models He enriched Mixing-length enlarged 1:1 Age of the basic model [Gyr] Ages of He enriched and large mixinglength models are underestimated if treated as a basic model. 3. Stellar Evolution as a Probe 3.1 PHS with Hot Jupiters Stars without planets PHS Extra-solar planets discovered 質量の分布 (1MJUP =木星の質 量) 軌道半径と離心率 ( 1AU=地球の軌道半径) ○惑星の母星 恒星の金属量 [Fe/H]=log10 X (Fe) / X (H) log10 X (Fe) / X (H ) sun Arguments against Metal-Pollution No-correlation with the depth of surface convection Pollut ed? No or weak correlations with the condensation temperatures Ecuvillon et al. (2006) Giants with Planets Planets with Giants are metal-poorer than those with Dwarfs (Pasquini et al. 2007) & Metallicity Distribution Giant PHSs (G and K) Dwarf PHSs Metal-Age relation Possible explanations 1) Formation mechanism depending on the mass of host stars 2) Metal dependence of Migration: metal-rich host smaller orbits 3) Surface pollution ∵ dilution due to deep surface convection 3.2 Stars in the Galactic Halo Deep survey of metal-poor stars in the Galactic Halo: HK survey (Beers et al. 1992) [2800 deg2 (North) + 4100 deg2 (South), 11.0 < B < 15.5 ] Hamburg/ESO (Christlieb et al. 2000) [8225 deg2 (South), 10.0 < B < 17.5 ] [Fe/H]<-2の星 ~2700個 [Fe/H]<-3の星 ~400個 (Beers et al. ARA&Ap 2005) 2 stars below [Fe/H] <-5, HE0107-5240 (-5.3, 2003) HE1327-2426 (-5.4, 2005) 1 star between [Fe/H] = -4 ~-5 HE0557-4840 (-4.8, 2007) number 10000 effective yields 1000 HK 100 HAM/ESO 10 1 ~ -5 -5 ~ -4 -4 ~ -3 [Fe/H] Beers & Christlieb (2005) + Norris et al. (2007) -3 ~ -2 3.2.1 EMP population のIMF と Binary origin (Komiya et al. 2007) Mmd=10 M, Δm=0.4とすると mξ(m) 主星のIMF 白色矮星 +CEMP 超新星 鉄, r-process 元素合成 伴星のIMF EMP starとして残る 低質量星 0.1 中質量星 1 大質量星 10 m (M) 100 Binary ― Probe into missing more massive EMP stars― C,O He H H Evolution of a primary star affects abundances of a secondary star. CEMP star is formed in a binary system. Observed feature of a CEMP star Mass of a primary star. Estimate of the IMF 2種類のCEMP CEMP-s 3 CEMP-nos [Ba/Fe] s-process元素過剰 窒素も過剰 s-process元素は少 ない 窒素は過剰な星と 過剰でない星があ る CEMP-s 2 1 CEMP-nos 0 -1 -2 -1 -0.5 (EMPではない炭素星は1種類) 0 0.5 1 1.5 2 □:[C/Fe], ■:[N/Fe] 2.5 3 3.2.2 Metallicity Distribution Function (MDF) 100000 Number nunmber Assumptions One zone model. No infall/outflow. Instantaneous recycling. Fe yield: 0.07M☉ Salpeter IMF 10000 10000 Theoretical MDF for IMF with Mmd =10 M☉. 1000 1000 100 Hyper metal 100 poor (HMP) 10 10 stars Cut-off of MDF observation 11 Results Derived top-heavy IMF is consistent with observation (for [Fe/H] > -4). -6 -6 -5.5 -5 -5 -4.5 -4 -3.5 -4 [Fe/H] [Fe/H] -3 -3 -2.5 -2 -2 銀河形成 Population III 形成 2段階に分けて考える EMP形成 [Fe/H]=-4~-2.5 mstar~10M☉ 合体 MDM~106M☉ Mgas~105M☉ 最初は小さなガス雲の中で 星形成が起きる 現在:Population I disk形成。 Population II形成 Mgas~1011M☉ Hierarchical galaxy formation • The cut-off is originate from structure formation process [Fe/H]~-4 2nd star [Fe/H]~-4 SN 1st mini-halo ~ 106-7 M☉ After 1st SN explosion, M Fe 0.07 Z 6 104 Z solar M cloud 10 baryon MDF cut-off at [Fe/H]~-4 Pop.3 stars still alive ⇒HMP star. (Suda et al.2004) merge Merger tree mini-haloの 質量(M☉) (実際は枝の数 はこの1000倍) このようなtree での化学進化 を計算 0.1 0.2 ( Big Bangからの時間Gyr) 0.5 1 z Effect of structure formation Assumptions Merging history: Press-Schechter (Somerville & Kollat1999) Theoretical MDF with merger tree. SFE: 10-10/yr Observed MDF Results Model predict cutoff at [Fe/H]~-4. Number of stars with Z = 0 is inconsistent. First star Mmd =100 M☉ for Z=0. Pair-Instability supernovae (Fe yield: 10M☉) ⇒iron overproduction First star : supermassive not PISN. 初代星への表面汚染 • Mini-haloの中では恒星の運動速度が遅いために、 星間ガスの恒星表面への降着が起きやすい 金属0で誕生 周囲の星間 物質を降着 [Fe/H]~-3 連星の場合は主星か らの質量降着 (炭素星に)[Fe/H]<-5 赤色巨星に [Fe/H]<-5 汚染を考慮したMDF 3.3.3 Database of Galactic EMP Stars for Galactic Archaeology (DaGaAr: Suda et al. 2007) Contents • Papers: 96 (covering since 2000) • Stars: • Data on high resolution spectroscopy [Fe/H] Number(prev.) 1495(847) [X/Fe]: 24,498 [X/H]: 26,090 logε: 26,090 Log g, etc; atmospheric data, -1< 124 -1~-2 214 -2~-3 419 -3~-4 117 <-4 4 Sample characteristics Metallicity distribution giants Magnitude distribution among samples selection effects due to survey Teff - surface gravity dwarfs Eu: neutron r-process + s-process [Eu/Fe] capture element r-process only [Eu/Ba] > 0 [Fe/H] Space distributions of EMP stars Distance ← surface gravity (assuming M=0.8 M) Astrometry + Spectroscopy (e.g., WFMOS) ↓ 位置、運動、 光度、組成 ⇒ 年齢 dwarfs giants 銀河の恒星地図 銀河形成史の再構築
© Copyright 2024 ExpyDoc