シミュレーションモデルと言語

Open-source NSE Codes
Applied to 40 Gbit/s
Soliton Lines
KAZUHIRO SHIMOURA
Kansai Electric Power Co., Japan
ECOC2001
( Oct. 4, 2001 RAI Congress Centre, Amsterdam,The Netherlands )
CONTENTS
Q-map method and Open-source Code
Simulation Reference System
40 Gbit/s Soliton line design by Q-maps
Optimal strength of dispersion management
Average-dispersion and signal-power design
Merit of the 40 Gbit/s soliton system
Nonlinear Schrödinger Equation
( by Akira Hasegawa 1973 )

  [ A  B] 
z
i
2
1
3 
A   2
 3

2
3
2

6

2
i
B [ 
2
2

 TR

Linear
2
]
Non Linear
Chirped Gaussian Pulse
 (0, ) 
Pm
2
exp[
(1  i C ) ]
2
S
2T0
Split Step Fourier Method
( by Fred Tappert 1971 )
Calculated by Mathematica Ver.4 on Win2000
Personal NSE Simulation System
Simulation Reference System
Q-factor definition for RZ-pulse
Dispersion map of the simulation model
(Periodical dispersion compensation scheme)
Pulse widths vibration in the DM-lines
( 40Gbit/s, Dc=±20ps/nm, Lc=100km, with 6nm filters )
Global Structure
Local Structure
Q-maps for the 40 Gbit/s DM-Soliton Lines
(Nc = 2, Pav=+5dBm, La = 50 km, Lt = 3 Mm)
Dav – Dc plane
Dav – Pav plane
Optimal Dispersion Compensation: Dc = ±30 ps/nm
Q-maps for the 40 Gbit/s DM-Soliton Lines
(Nc = 4/6, Pav=+5dBm, La = 50 km, Lt = 3 Mm)
Nc = 4
Nc = 6
Optimal Dispersion Compensation: Dc = ±30 ps/nm
Q-maps for the 40 Gbit/s DM-Soliton Lines
(Nc = 2, Pav=+5dBm, La = 30/80 km, Lt = 3 Mm)
La=30km
La=80km
Q-maps for the 40 Gbit/s DM-Soliton Lines
(Nc = 2, Pav=+5dBm, La = 30/80 km, Lt = 3 Mm)
La=30km
La=80km
PMD suppression effect of soliton
(Nc = 2, Pav=+5dBm, Dc=+30ps/nm, La = 50km, Lt = 3Mm)
PMD = 0 ps/km0.5
PMD = 0.1 ps/km0.5
Optimal S-parameter for the DM-line
( T. Yu, et. al., 1997 )
S 
k1 z1  k 2 z 2
tS
2
 2.55
Dc
TS
2
k = − ( λ2 / 2πc ) d = 1.27 D (ps/nm/km)
Ts (ps) : FWHM at chirp-free point
Dc = ±30 ps/nm, Ts = 6.8 ps  S = 1.65
 S = 1.65 ( T. Yu, et. al., 1997 )
Results of the 40Gbit/s simulation
Dispersion management strength
Dc = ±30 ±10 (ps/nm)
: for all cases S = 1.65
Signal Power and Dispersion
Dav = +0.04 ± 0.02 (ps/nm/km)
Pav = +7 ± 2 (dBm)
: for La = 50km case
Experimental setup of the 80 Gbit/s,
800 km transmission
10G
(215-1)
Coupler
PBS
LN
MLLD
10→40G
10G
MUX
80G
Delay
DSF
EDFA13
EDFA3
SPAN12
DSF
EDFA2
SPAN 2
NZDSF
DCF
SPAN 1
10G
80G
EA1
DCF
20G
PBS
EDFA14
APC
80G
PD
40G
EDFA1
EA2
10G
40G PLL
10G
Receiver
Bit Error Rate for 8*10Gbit/s CH
–5
10
●:
■:
▲:
▼:
○:
□:
△:
▽:
–6
Bit Error Rate
10
–7
10
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
–8
10
–9
10
–10
10
–11
10
–19
–18
–17
–16
–15
Received Power (dBm)
Merit of the soliton-based system
For Long distance transmission
(Soliton stability effect, High intensity signal and
suppressing PMD effect)
Conventional DSF without any dispersion slope
compensation (Single Wavelength)
Narrow band low cost amplifier with Band pass
filter is available.
Dispersion design is simple (Dc= ±30ps/nm)
Low cost High capacity system is possible.
You can download some code
http://www.asahi-net.or.jp/~ix6k-smur/soliton.html