Lieb-Liniger模型とanholonomy 阪市大数研: 米澤 信拓 首都大学東京: 田中 篤司 高知工科大学: 全 卓樹 1. Introduction 1-1. topology of delta potential 𝜙 +0 = 𝜙′ +0 −𝜙′ −0 ℏ2 2𝑚𝑔 Dirichlet condition Parameter space of 𝑔 = + Adiabatic cycle of 𝑔 𝑔 = +∞ Start: 𝑔 = +0 Goal: 𝑔 = −0 𝑔 = −∞ Berry phase 1-2. delta potential in quantum well (TC, Phys. Lett. A 248, 285 (1998)) Berry phase Does N body delta potential system have “Anholonomy” ? Quantum holonomy or Anholonomy 1-3. Plan • • • • • • 1. Introduction 2. Lieb-Liniger model 3. Bethe equation 4. anholonomy of spectrum 5. Example 6. Conclusion 2. Lieb-Liniger model 2-1. Definition E. H. Lieb et al., Phys. Rev. 130 (1963) 1605. Quantum many body system on circle 𝑚=ℏ=1 Bosonic system periodic boundary conditions 𝜓 2𝜋, 𝑥2 , 𝑥3 , ⋯ , 𝑥𝑁 𝜕1 𝜓 2𝜋, 𝑥2 , 𝑥3 , ⋯ , 𝑥𝑁 2-2 Connection to field theory Commutation relation: Vaccum: N particle state Basis: Linear combination: Eigenstate Heisenberg rep. Non-Linear-Schrodinger Equation 3. Bethe equation 3-1. Bethe equation 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 3-2. Two Bethe equation discontinuous at 𝑡 = ±∞ 𝑛𝑖 ∞ continuous at discontinuous at 𝑛𝑖 0 continuous at discontinuous at Parameter space of 𝑔 We need two chart at least. 4. anholonomy of spectrum 4-1 Super Tonks Girardeau state Ground state for : Tonks Girardeau state Continuous transition : Super Tonks Girardeau state Ground state for Adiabatic cycle of 𝑔 𝑔 = +∞ Start: 𝑔 = +0 Experiment Goal: 𝑔 = −0 E. Haller et. al., Science 325 (2009) 1224 𝑔 = −∞ 4-2. calculation of anholonomy Im 𝑥 1 −) Re 4-3. Calculation of anholonomy 𝑔 = +0 𝑔>0 𝑘𝑖 is real 𝑔 = ±∞ 𝑔<0 𝑘𝑖 → 𝑘𝑖 (−∞) 𝑔 = −0 4-4. summary Total 5. Example 5.1 N=2 E (-3,3) 3 (-2,3) 2 (-2,2) (-1,2) 1 (-1,1) (0,1) (0,0) 2 −2 (𝑔 g = ±∞) 1 −1 (𝑔 g = −1) 1 00 (𝑔 g =00) (0,0) 11 (𝑔 g =11) 2 (𝑔 g = ±∞) x 5.2 N=3 (-5,0,5) E 5 (-4,0,5) 4 (-4,0,4) (-3,0,3) 3 (-2,0,3) 2 (-2,0,2) (-1,0,1) 1 (0,0,1) (0,0,0) 2 −2 (𝑔 = ±∞) g 1 −1 (𝑔 = −1) g 1 0 0 (𝑔 = 0) g 0 11 (𝑔 = 1) g 1 2 2 (𝑔 = ±∞) g x 6. Conclusion 𝑔 = +∞ We propose a cycle of 𝑔: 𝒞 Start: 𝑔 = +0 Goal: 𝑔 = −0 𝑔 = −∞ Parameter space of 𝑔 Quasi-momenta: Initial state ≠ Difference of quasi-momenta: cf. Berry phase Final state Anholonomy New example in Many body system
© Copyright 2025 ExpyDoc