Sidewall成長を 利用したFZO ナノワイヤーの作製

Fabrication of oxide nanostructure
using Sidewall Growth
田中研 M1
尾野篤志
Background
strongly correlated electron system(強相関電子系) in nanosize
(La, Pr,Ca)MnO3 film
STM image
LPCMO
Ferromagnetic
VO2 film
SNIM image
VO2
Metal
Insulator
Anti-Ferromagnetic
100nm
100nm
M. Fäth et al, Science
285 (1999)1540
100nm
100nm
500nm
M. M. Qazilbash et al, Science
318 (2007) 1750,
Background
strongly correlated electron system(強相関電子系) in nanosize
• Nanostructure lead to sharp phase transition
Insulator
(La, Pr,Ca)MnO3 film
Metal
500nm
1μm
500nm
Charge Ordering Insulator
Ferromagnetic metal
Y. Yanagisawa et al Appl. PHYSICS
LETTERS 89 (2006) 253121
Nano-structure fabrication technique
Dimension-control
Future
advanced
nano-device
Size-control
Fabrication of nanostructure
Top down and Bottom up
Bottom up Technique
• Accumulate atoms by
deposition
For example
―Pulsed Laser Deposition
―Sputtering Deposition
Top down Technique
• Figure materials finely
For example
―Nano Imprint Lithography
―AFM Lithography
Top down
Bottom up
Complex pattern
○
△
Size control
△(>101nm)
○(>10-1nm)
Our nanostructure fabrication method
Combination of Top down and Bottom up
Size control
Complex pattern
Top down
△(>101nm)
○
Top Down
• Nano Imprint Technology
Bottom up
○(>10-1nm)
△
Combination
○(>10-1nm)
○
Bottom up
• Pulsed Laser Deposisiton
Purpose
- Fabrication of oxide nanostructures
and evaluation of their properties• Establishment of fabrication method
ZnO nanobox
ZnO: Semiconductor, Optical Device
Amorphous @RT ⇒ Crystal @HT
• Measurement of their physical properties
• Application for devices
Fabrication of the nanostructure
① Patterning by NIL
② Depositon using Sidewall growth
③ Removing patterns ( Ion milling and Cleaning)
④ Crystallization by annealing
⑤ Measurement of their physical properties
Experimental method
1. Deposition on Plane Substrate
1-1. Control thin film’s thickness
1-2. Optimize crystallization condition by
annealing
2. Deposition on Nano-pattaerne substrate
― Fabricate ZnO nanobox using sidewall
growth
Deposition@ Room temperature
Result1-1: Deposition of ZnO
time-dependency of sidewall thickness
I measured thin films’ thickness
Thickness
160 [nm]
180
140
120
d=1.30t
100
80
d: film’s thickness (nm)
t: deposition time (min)
60
40
20
ZnO deposition: PLD method
Substrate: Si(001)
PO2=1.0×10-2Pa
Deposition time: 30-120min.
Evaluation method:
Atomic Force Microscopy
Deposition time [min.]
0
0
50
100
150
Film’s thickness∝Sidewall’s thickness
Sidewall thickness :
controllable
Result1-2: Crystallization condition
Optimize the condition of Crystallizing ZnO
Intensity
(a.u.)
950℃
550℃
as-grown
ZnO(0002)
Annealing temperature:
550-950 ℃
Evaluation method:
X-ray Diffraction
34
34.5
35
35.5
36
36.5
37
2θ [°]
by Annealing
•ZnO crystallization: higher than 550℃
Result2: Fabrication of ZnO nano-box
Evaluation method: Scanning Electron Microscopy
Polymers on substrate
ZnO-deposited substrate
1μm
Ion Milling
1μm
Acetone cleaning
1μm
45nm
500nm
Summary
• I succeeded in fabrication of ZnO nanobox by the
combination Top down (imprint) and Bottom up (PLD)
technique.
• The side wall thickness was 45nm.
• I need to improve the accuracy and responsibility.
This technique can be applied for another system.
Various patterns can be formed.
Example of various patterns
Examples of the various patterns: Mo, Au
100 nm
150 nm
200 nm
2 µm
60nm
200 nm
150 nm
N.-G. Cha et al. Nanotechnology
20 (2009) 395301
Next Step
―I am trying to fabricate Fe3-xZnxO4 nanowire
500nm
50nm!!
Y. Yanagisawa et al Appl. PHYSICS
FZO
LETTERS 89 (2006) 253121
1.Strongly correlated electron system
2.Ferromagnetic semiconductor @ room temperature
MR effect ⇒
Spintronics
MRAM, Spin FET, …