IPSS Selection/ Switching Review of Selection/Switching Process Treatment Effects z = 0,1 Treatment 0,1 (0: non-college 1: college) Observe y=y1z+y0(1z), P(y1|x, z1), P(y0|x, z0), P(z0|x), P(z1|x) censored Treatment: z Outcome: y P(y0∈B|x,z0) z=0 Selection P(y1∈B | x,z0) P(y0∈B | x,z1) z=1 P(y1∈B | x,z1) 1 IPSS Selection/ Switching Effect of Treatment 1 (improvement over 0): T(B|x) = P(y1∈B|x) – P(y0∈B|x) B: “success” P(y1∈B|x) = P(y1∈B|x,z1) P(z1|x) + P(y1∈B|x,z0) P(z0|x) -) P(y0∈B|x) = P(y0∈B|x,z1) P(z1|x) + P(y0∈B|x,z0) P(z0|x) -------------------------------------------------------------------------------P(y1∈B|x,z1) P(z1|x) - P(y0∈B|x,z0) P(z0|x) + P(y1∈B|x,z0) P(z0|x) - P(y0∈B|x,z1) P(z1|x) Width of the interval P(y1∈B|x,z0) P(z0|x) P(y0∈B|x,z1) P(z1|x) Max P(z0|x) Min : P(z1|x) => width = P(z0|x)+P(z1|x) = 1 2 IPSS Selection/ Switching Example : Wage/ Labor Market Participation z=1 Work z=0 Non-Work We want to know y: Market Wage P(y1|x) = P(y1|x,z0) P(z0|x) + P(y1|x,z1) P(z1|x) Self-selection: If y1> R(x) then z =1, else z=0. Treatment: z Outcome: y P(y0∈B|x,z0) z=0 P(y1∈B | x,z0) Selection P(y0∈B | x,z1) z=1 P(y1∈B | x,z1) 3 IPSS Selection/ Switching Assumption: Treatment Independent of Outcomes? TIO: P(y1|x,z0)= P(y1|x,z1) No way! It can’t be true. z=1 work z=0 non-work wage Reservation wage 4 IPSS Selection/ Switching Example: Ordered Outcomes (New Drug) z= 0 Placebo, = 1 New Drug Event : y∈B: y≤t y: life span We want to know (say something about) P(y1∈B|x) = P(y1∈B|x,z0) P(z0|x) + P(y1∈B|x,z1) P(z1|x) No knowledge: Lower B : Upper B : P(y1∈B|x,z1) P(z1|x) P(z0|x) + P(y1∈B|x,z1) P(z1|x) Additional Information y1>y0 P(y1∈B|x, z0) < P(y0∈B|x,z0) Upper B: P(y0∈B|x,z0)) P(z0|x) + P(y1∈B|x,z1) P(z1|x) 5 IPSS Selection/ Switching P(y1<t|x,z0) < P(y0<t|x,z0) y0 y1 t y 6 IPSS Selection/ Switching Treatment: z Outcome: y P(y0∈B|x,z0) z=0 P(y1∈B | x, z0) Selection z=1 P(y0∈B | x, z1) P(y1∈B | x, z1) 7 IPSS Selection/ Switching Example: Roy Model (Wage in sector 0, 1, e.g. 0=Fashion,1= IT) z=0 y0>y1, z=1 y0<y1, y0∈B: y≥t We want to know (say something about) P(y0∈B|x) = P(y0∈B|x,z0) P(z0|x) + P(y0∈B|x,z1) P(z1|x) No knowledge: Lower B : P(y0∈B|x,z0) P(z0|x) Upper B : P(y0∈B|x,z0) P(z0|x) + P(z1|x) Additional Information from self-selection P(y0∈B|x,z1) < P(y1∈B|x,z1) Upper B: P(y0∈B|x,z0) P(z0|x) + P(y1∈B|x,z1) P(z1|x) 8 IPSS Selection/ Switching If z=1 then it has to be true P(y0>t|x,z1) < P(y1> t|x,z1) y0 y1 t y 9
© Copyright 2025 ExpyDoc