産業系排水由来による河川水の 有機フッ素化合物汚染 Kazuaki SASAKI, Akira KIKUCHI, Norimitsu SAITO (Research Institute for Environmental Sciences and Public Health of Iwate Prefecture, Morioka Iwate, Japan) 金 色 堂 POPs条約までの動向 表 2. POPs 条約までの動向 1948 2000 2000 2001 2002 2004 2005 2005 2005 2006 2006 2006 2008 2009 3M社(米国) 3M社(米国) U.S. EPA デュポン社(米国) 日本 欧州 経済委員会 U.S. EPA デュポン社(米国) U.S. EPA U.S. EPA U.S. EPA 欧州 環境委員会 欧州 世界 PFOS製造開始 PFOS製造中止を発表 PFOAのレビューを開始 ワシントン工場周辺の集団代表訴訟を受ける PFOS・PFOAを第二種監視化学物質に指定 POPs議定書への追加検討開始 デュポン社に 3億ドルの制裁金を科す発表 消費者集団訴訟を受ける デュポン社と罰金 1650万ドルで和解 メーカーに 2010/15 PFOA Stewadship program を提起 メーカと PFOA飲料水基準 (0.5μg/L) の合意 PFOS制限指令を採択 PFOS含有製品の EU内への上市及び使用禁止 第4回POPs条約締約国会議で PFOS・PFOSF規制を決定 Table1 Target PFCs analyzed by LC/MS/MS A. Perfluorosulfonic acids PFOS C4 C6 C7 C8 C10 I.S:Mass-Lablled C8 FW perfluorobutanesulfonic acid 299.1 CF3(CF2)3SO3 perfluorohexanesulfonic acid 399.1 CF3(CF2)5SO3 perfluoroheptanesulfonic acid 449.1 CF3(CF2)6SO3 perfluorooctanesulfonic acid 499.1 CF3(CF2)7SO3 perfluorodecanesulfonic acid 599.1 CF3(CF2)9SO3 13 13 CF3(CF2)3( CF2)4SO3 perfluoro-1-[1,2,3,4- C4]-octanesulfonic acid 503.1 B. Perfluorocarboxylic acids PFOA C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C16 - CF3(CF2)3COO CF3(CF2)4COOCF3(CF2)5COOCF3(CF2)6COO CF3(CF2)7COOCF3(CF2)8COO CF3(CF2)9COO CF3(CF2)10COO CF3(CF2)11COO CF3(CF2)12COOCF3(CF2)14COOI.S:Mass-Lablled C8 CF3(CF2)4(13CF2)2COO- perfluoropentanoic acid perfluorohexanoic acid perfluoroheptanoic acid perfluorooctanoic acid perfluorononanoic acid perfluorodecanoic acid perfluoroundecanoic acid perfluorododecanoic acid perfluorotridecanoic acid perfluorotetradecanoic acid perfluorohexadecanoic acid - perfluoro-1-[1,2-13C2]-octanoic acid FW 263.1 313.1 363.1 413.1 463.1 513.1 563.1 613.1 663.1 713.1 813.2 415.1 Rinse with methanol (30mL) Solid Phase Extraction Sample 1L Oasis WAX Plus type Elution 0.1%NH4OH/methanol 4mL water concentrator system Concentration N gas LC/MS/MS-SRM 1mL(70%methanol) ESI-Negative 2 Fig. 1 Flow chart for PFCs analysis Table2 Optimum conditions for LC/MS/MS a ) HPLC Instrument Analytical column Column temp. Mobile phase Agilent 1200 Series ZORBAX Edipse Plus C18 (2.1mm x 100mm, 1.8 μm) 40 ℃ A: 10 mM CH3COONH4/H2O B: CH3CN (LC/MS grade) Injection volume 10.0 μL b ) LC/MS/MS Instrument Ionization Prec. Ion Product Ion Frag. Voltage (v) CE (v) Drying gas Vaper Temp. Nebulizer Capillary Delta EMV Agilent 6410 ESI (Negative mode) , SRM M-1 M-45 (Perfluorocarboxylic acids) 80, 99 (Perfluorosulfonic acids) 50-100 (Perfluorocarboxylic acids) 150-200 (Perfluorosulfonic acids) 5 (Perfluorocarboxylic acids) 55 (Perfluorosulfonic acids) N2 (5 L/min, 350 ℃) 150 ℃ N2 (60 psi) 2000 v 400 v c ) Gradient Time Frow rate Solv. A [min] [mL/min] [ % ] 0 0.2 70 4 0.2 70 20 0.2 25 25 0.2 25 26 0.3 10 34 0.3 10 35 0.2 70 45 0.2 70 Table3 Calibration curves and chromatogram of PFCs ( 0.02ng/mL ) LC/MS/MS-SRM y = 19746x R2 = 0.992 PFXA C5 400,000 PFXA C6 y = 54026x R2 = 0.9955 y = 55080x R2 = 0.9988 PFXA C7 1,200,000 PFXA C8 1,200,000 1,600,000 C=16 - MRM (813.0 -> 769.0) WD0.02ppb3.d y = 70399x R2 = 0.9972 2.5 1 21 2 0 300,000 900,000 900,000 200,000 600,000 600,000 800,000 100,000 300,000 300,000 400,000 0 0 0 0 0 5 10 ppb 15 20 0 4 8 12 ppb 16 1,200,000 20 0 4 8 12 ppb 16 - MRM (713.0 -> 669.0) WD0.02ppb3.d 2 1 21 2 0 - MRM (663.0 -> 619.0) WD0.02ppb3.d 2 1 0 20 5 10 ppb 15 21 2 20 0 - MRM (613.0 -> 569.0) WD0.02ppb3.d PFXA C9 1,200,000 y = 54026x R2 = 0.9955 PFXA C10 2,000,000 y = 89724x R2 = 0.9979 1 PFXA C11 1,600,000 y = 79991x R2 = 0.9987 PFXA C12 y = 88751x R2 = 0.9983 2,000,000 1,500,000 600,000 1,000,000 800,000 300,000 500,000 400,000 0 0 0 0 x10 -1 - MRM (599.0 -> 80.0) WD0.02ppb3.d 1,200,000 900,000 21 2 1 1,500,000 21 2 0 1,000,000 - MRM (563.0 -> 519.0) WD0.02ppb3.d 0 5 10 ppb 15 0 20 y = 89708x R2 = 0.9951 PFXA C13 5 10 ppb PFXA C14 15 0 20 y = 118262x R2 = 0.9976 5 10 ppb PFXA C16 15 0 20 y = 119567x R2 = 0.9973 1,500,000 1,800,000 1,800,000 120,000 1,000,000 1,200,000 1,200,000 80,000 500,000 600,000 600,000 40,000 0 0 0 5 10 ppb 15 0 4 8 12 ppb 16 20 10 ppb 15 20 0 4 8 12 ppb 16 20 - MRM (513.0 -> 469.0) WD0.02ppb3.d 2.5 1 y = 6229x R2 = 0.9905 160,000 0 20 5 PFXS C4 2,400,000 21 2 0 0 2,400,000 2,000,000 1 500,000 21 2 0 x10 1 - MRM (503.0 -> 80.0) WD0.02ppb3.d 1,2,3,4-13C-PFOS 2.5 1 21 2 0 x10 -1 - MRM (499.0 -> 99.0) WD0.02ppb3.d PFOS 499→99 1 21 2 0 0 0 5 10 ppb 15 20 x10 -1 - MRM (499.0 -> 80.0) WD0.02ppb3.d 5 1 PFOS 499→80 21 2 0 3 WD0.02ppb3.d 4 5 6 - MRM1(463.02-> 419.0) 7 8 9 10 1 PFXS C6 y = 5073x PFXS C7 R2 = 0.9982 y = 5989.3x R2 = 0.9924 PFXS C8 y = 15487x R2 = 0.9932 PFXS C10 120,000 320,000 120,000 90,000 240,000 90,000 80,000 60,000 160,000 60,000 40,000 30,000 80,000 30,000 160,000 0 0 0 5 10 ppb 15 20 120,000 5.0 10.0 15.0 ppb 20.0 0 5 10 ppb 15 20 11 12 13 14 15 16 Counts (%) vs. Acquisition Time (min) 17 18 19 20 21 22 23 24 25 21 2 0 x10 -1 - MRM (449.0 -> 80.0) WD0.02ppb3.d 2.5 1 21 2 0 x10 1 - MRM (415.0 -> 370.0) WD0.02ppb3.d 1,2-13C-PFOA C=8 1 0 0 0 0.0 y = 5599.7x R2 = 0.9973 0 5 10 ppb 15 20 21 2 PFOA - MRM (413.0 -> 369.0) WD0.02ppb3.d 5 1 21 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Counts (%) vs. Acquisition Time (min) 17 18 19 20 21 22 23 24 25 120 Usual SPE + Rinse with methanol Recvery (%) 100 80 60 40 20 C16 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 0 Perfluorocarboxylic acids ( 0.5 ng/L ) Fig.2 PFOA group recovery(%) 毛越寺 Recovery (%) Usual SPE + Rinse with methanol 100 90 80 70 60 50 40 30 20 10 0 C4 C6 C7 C8 C10 Perfluorosulfonic acids (0.5 ng/L) Fig.3 PFOS group recovery(%) 北山崎 100% PFXS-C8 80% PFXS-C6 PFXS-C4 60% PFXA-C11 PFXA-C10 40% PFXA-C9 PFXA-C8 20% PFXA-C7 PFXA-C6 0% WWH OW n=3 SPW-Fn=5 SPW-Un=5 WWF-B WWF-A WWF: waste water from factry SPW-U:City type sewage plant waste water SPW-F :farm village sewage plant wastewater OW:ooze water of final landfill site for stable industrial wastes WWH:Human-waste treatment plant waste water Fig.4 Composition ratio of PFCs Concentratios [ PFCs ng/L ] 100,000 10,000 1,000 100 10 1 0 SW-Do n=3 SW-Up n=2 SPW-F n=5 SPW-U n=5 OW n=3 WWF n=2 WWF: waste water from factry OW:ooze water of final landfill site for stable industrial wastes SPW-U:City type sewage plant waste water SPW-F :farm village sewage plant wastewater SW-Up: upstream water SW-Do: downstream water Fig.5 Concentrations PFCs PFXS-C8 Concentra ti os [PF Cs ng /L ] 12.0 PFXS-C6 63 % PFXS-C4 PFXA-C11 8.0 PFXA-C10 Wastewater from factory PFXA-C9 PFXA-C8 4.0 PFXA-C7 6% PFXA-C6 Sewage plant waste water 0.0 SWDo SWM SWUp SWUp: upstream water SWM:middlestream water SWDo: downstream water Fig.6 PFCs concentration of the river water Conclusions まとめ ● ● ● ● 産業排水から検出されたPFCsの種類 PFOS :C4-C8, PFOA :C6-C11 検出されたPFCs 濃度 数10 ng/L-10000 ng/L ~以上 河川の濃度レベル: 'ng/L'. 都市上流 : PFCs 濃度< 1 ng/L 都市下流 : PFCs > 10 ng/L 河川への影響:工業団地排水>下水排水 Technical know-how ① Pure water for LC mobile phase Milli-Q Water +GL-Pak Active Carbon Jr (400mg Double connection ) ② LC Gradient method It is necessary to select the gradient method of reducing the noise of the LC baseline. ③ Contamination control Rinse apparatus enough by the methanol. ① Pure water for LC mobile phase x10 2 - MRM (513.0 -> 469.0) MeOH-2WAKO-pfw-R-r005.d 5.75 1 5.5 5.25 5 4.75 4.5 4.25 4 3.75 3.5 3.25 3 2.75 2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 x10 2 12 2 Sold product ( for LC/MC ) - MRM (513.0 -> 469.0) MeOH-2pfw-new-R-r006.d 5.75 1 5.5 5.25 5 4.75 4.5 4.25 4 3.75 3.5 3.25 3 2.75 2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 12 2 Milli-Q Water +GL-Pak Active Carbon Jr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Counts vs. Acquisition Time (min) 16 17 18 19 20 21 22 23 24 25 ② LC Gradient method x10 2 4 - MRM (463.0 -> 419.0) MeOH-1pfw-new-r005.d 1 3.8 Gradient method A baseline 3.6 3.4 12 2 AcCN 25%~90% methanol 10μL ( m / z 463→419) 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 x10 2 4 3.8 3.6 3.4 - MRM (463.0 -> 419.0) MeOH-2pfw-new-R-r005.d 1 Gradient method B baseline 12 2 AcCN 30%~90% methanol 10μL (m / z 463→419) 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Counts vs. Acquisition Time (min) 16 17 18 19 20 21 22 23 24 25
© Copyright 2024 ExpyDoc