産業廃水中における有機フッ素化合物の分析 方法と汚

産業系排水由来による河川水の
有機フッ素化合物汚染
Kazuaki SASAKI, Akira KIKUCHI, Norimitsu SAITO (Research
Institute for Environmental Sciences and Public Health of Iwate
Prefecture, Morioka Iwate, Japan)
金
色
堂
POPs条約までの動向
表 2. POPs 条約までの動向
1948
2000
2000
2001
2002
2004
2005
2005
2005
2006
2006
2006
2008
2009
3M社(米国)
3M社(米国)
U.S. EPA
デュポン社(米国)
日本
欧州 経済委員会
U.S. EPA
デュポン社(米国)
U.S. EPA
U.S. EPA
U.S. EPA
欧州 環境委員会
欧州
世界
PFOS製造開始
PFOS製造中止を発表
PFOAのレビューを開始
ワシントン工場周辺の集団代表訴訟を受ける
PFOS・PFOAを第二種監視化学物質に指定
POPs議定書への追加検討開始
デュポン社に 3億ドルの制裁金を科す発表
消費者集団訴訟を受ける
デュポン社と罰金 1650万ドルで和解
メーカーに 2010/15 PFOA Stewadship program を提起
メーカと PFOA飲料水基準 (0.5μg/L) の合意
PFOS制限指令を採択
PFOS含有製品の EU内への上市及び使用禁止
第4回POPs条約締約国会議で PFOS・PFOSF規制を決定
Table1
Target PFCs analyzed by LC/MS/MS
A. Perfluorosulfonic acids
PFOS
C4
C6
C7
C8
C10
I.S:Mass-Lablled C8
FW
perfluorobutanesulfonic acid
299.1
CF3(CF2)3SO3
perfluorohexanesulfonic acid
399.1
CF3(CF2)5SO3
perfluoroheptanesulfonic acid
449.1
CF3(CF2)6SO3
perfluorooctanesulfonic acid
499.1
CF3(CF2)7SO3
perfluorodecanesulfonic acid
599.1
CF3(CF2)9SO3
13
13
CF3(CF2)3( CF2)4SO3 perfluoro-1-[1,2,3,4- C4]-octanesulfonic acid 503.1
B. Perfluorocarboxylic acids
PFOA
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C16
-
CF3(CF2)3COO
CF3(CF2)4COOCF3(CF2)5COOCF3(CF2)6COO
CF3(CF2)7COOCF3(CF2)8COO
CF3(CF2)9COO
CF3(CF2)10COO
CF3(CF2)11COO
CF3(CF2)12COOCF3(CF2)14COOI.S:Mass-Lablled C8 CF3(CF2)4(13CF2)2COO-
perfluoropentanoic acid
perfluorohexanoic acid
perfluoroheptanoic acid
perfluorooctanoic acid
perfluorononanoic acid
perfluorodecanoic acid
perfluoroundecanoic acid
perfluorododecanoic acid
perfluorotridecanoic acid
perfluorotetradecanoic acid
perfluorohexadecanoic acid
-
perfluoro-1-[1,2-13C2]-octanoic acid
FW
263.1
313.1
363.1
413.1
463.1
513.1
563.1
613.1
663.1
713.1
813.2
415.1
Rinse with methanol (30mL)
Solid Phase Extraction
Sample 1L
Oasis WAX Plus type
Elution
0.1%NH4OH/methanol 4mL
water concentrator system
Concentration N gas
LC/MS/MS-SRM
1mL(70%methanol)
ESI-Negative
2
Fig. 1 Flow chart for PFCs analysis
Table2 Optimum conditions for LC/MS/MS
a ) HPLC
Instrument
Analytical
column
Column temp.
Mobile phase
Agilent 1200 Series
ZORBAX Edipse Plus C18
(2.1mm x 100mm, 1.8 μm)
40 ℃
A: 10 mM CH3COONH4/H2O
B: CH3CN (LC/MS grade)
Injection volume 10.0 μL
b ) LC/MS/MS
Instrument
Ionization
Prec. Ion
Product Ion
Frag. Voltage
(v)
CE
(v)
Drying gas
Vaper Temp.
Nebulizer
Capillary
Delta EMV
Agilent 6410
ESI (Negative mode) , SRM
M-1
M-45 (Perfluorocarboxylic acids)
80, 99 (Perfluorosulfonic acids)
50-100 (Perfluorocarboxylic acids)
150-200 (Perfluorosulfonic acids)
5
(Perfluorocarboxylic acids)
55
(Perfluorosulfonic acids)
N2 (5 L/min, 350 ℃)
150 ℃
N2 (60 psi)
2000 v
400 v
c ) Gradient
Time
Frow rate Solv. A
[min]
[mL/min] [ % ]
0
0.2
70
4
0.2
70
20
0.2
25
25
0.2
25
26
0.3
10
34
0.3
10
35
0.2
70
45
0.2
70
Table3 Calibration curves and chromatogram
of PFCs ( 0.02ng/mL ) LC/MS/MS-SRM
y = 19746x
R2 = 0.992
PFXA C5
400,000
PFXA C6
y = 54026x
R2 = 0.9955
y = 55080x
R2 = 0.9988
PFXA C7
1,200,000
PFXA C8
1,200,000
1,600,000
C=16
- MRM (813.0 -> 769.0) WD0.02ppb3.d
y = 70399x
R2 = 0.9972
2.5 1
21 2
0
300,000
900,000
900,000
200,000
600,000
600,000
800,000
100,000
300,000
300,000
400,000
0
0
0
0
0
5
10
ppb
15
20
0
4
8
12
ppb
16
1,200,000
20
0
4
8
12
ppb
16
- MRM (713.0 -> 669.0) WD0.02ppb3.d
2 1
21 2
0
- MRM (663.0 -> 619.0) WD0.02ppb3.d
2 1
0
20
5
10
ppb
15
21 2
20
0
- MRM (613.0 -> 569.0) WD0.02ppb3.d
PFXA C9
1,200,000
y = 54026x
R2 = 0.9955
PFXA C10
2,000,000
y = 89724x
R2 = 0.9979
1
PFXA C11
1,600,000
y = 79991x
R2 = 0.9987
PFXA C12
y = 88751x
R2 = 0.9983
2,000,000
1,500,000
600,000
1,000,000
800,000
300,000
500,000
400,000
0
0
0
0
x10 -1 - MRM (599.0 -> 80.0) WD0.02ppb3.d
1,200,000
900,000
21 2
1
1,500,000
21 2
0
1,000,000
- MRM (563.0 -> 519.0) WD0.02ppb3.d
0
5
10
ppb
15
0
20
y = 89708x
R2 = 0.9951
PFXA C13
5
10
ppb
PFXA C14
15
0
20
y = 118262x
R2 = 0.9976
5
10
ppb
PFXA C16
15
0
20
y = 119567x
R2 = 0.9973
1,500,000
1,800,000
1,800,000
120,000
1,000,000
1,200,000
1,200,000
80,000
500,000
600,000
600,000
40,000
0
0
0
5
10
ppb
15
0
4
8
12
ppb
16
20
10
ppb
15
20
0
4
8
12
ppb
16
20
- MRM (513.0 -> 469.0) WD0.02ppb3.d
2.5 1
y = 6229x
R2 = 0.9905
160,000
0
20
5
PFXS C4
2,400,000
21 2
0
0
2,400,000
2,000,000
1
500,000
21 2
0
x10 1 - MRM (503.0 -> 80.0) WD0.02ppb3.d
1,2,3,4-13C-PFOS
2.5 1
21 2
0
x10 -1 - MRM (499.0 -> 99.0) WD0.02ppb3.d
PFOS 499→99
1
21 2
0
0
0
5
10
ppb
15
20
x10 -1 - MRM (499.0 -> 80.0) WD0.02ppb3.d
5 1
PFOS 499→80
21 2
0
3 WD0.02ppb3.d
4
5
6
- MRM1(463.02-> 419.0)
7
8
9
10
1
PFXS C6
y = 5073x
PFXS C7
R2 = 0.9982
y = 5989.3x
R2 = 0.9924
PFXS C8
y = 15487x
R2 = 0.9932
PFXS C10
120,000
320,000
120,000
90,000
240,000
90,000
80,000
60,000
160,000
60,000
40,000
30,000
80,000
30,000
160,000
0
0
0
5
10
ppb
15
20
120,000
5.0
10.0 15.0
ppb
20.0
0
5
10
ppb
15
20
11 12 13 14 15 16
Counts (%) vs. Acquisition Time (min)
17
18
19
20
21
22
23
24
25
21 2
0
x10 -1 - MRM (449.0 -> 80.0) WD0.02ppb3.d
2.5 1
21 2
0
x10 1 - MRM (415.0 -> 370.0) WD0.02ppb3.d
1,2-13C-PFOA
C=8
1
0
0
0
0.0
y = 5599.7x
R2 = 0.9973
0
5
10
ppb
15
20
21 2
PFOA
- MRM (413.0 -> 369.0) WD0.02ppb3.d
5 1
21 2
0
1
2
3
4
5
6
7
8
9
10
11 12 13 14 15 16
Counts (%) vs. Acquisition Time (min)
17
18
19
20
21
22
23
24
25
120
Usual SPE
+ Rinse with methanol
Recvery (%)
100
80
60
40
20
C16
C14
C13
C12
C11
C10
C9
C8
C7
C6
C5
0
Perfluorocarboxylic acids ( 0.5 ng/L )
Fig.2 PFOA group recovery(%)
毛越寺
Recovery (%)
Usual SPE
+ Rinse with methanol
100
90
80
70
60
50
40
30
20
10
0
C4
C6
C7
C8
C10
Perfluorosulfonic acids (0.5 ng/L)
Fig.3 PFOS group recovery(%)
北山崎
100%
PFXS-C8
80%
PFXS-C6
PFXS-C4
60%
PFXA-C11
PFXA-C10
40%
PFXA-C9
PFXA-C8
20%
PFXA-C7
PFXA-C6
0%
WWH
OW n=3
SPW-Fn=5
SPW-Un=5
WWF-B
WWF-A
WWF: waste water from factry SPW-U:City type sewage plant waste water SPW-F :farm
village sewage plant wastewater
OW:ooze water of final landfill site for stable industrial wastes
WWH:Human-waste treatment plant waste water
Fig.4 Composition ratio of PFCs
Concentratios [ PFCs ng/L ]
100,000
10,000
1,000
100
10
1
0
SW-Do n=3
SW-Up n=2
SPW-F n=5
SPW-U n=5
OW n=3
WWF n=2
WWF: waste water from factry OW:ooze water of final landfill site for stable industrial
wastes SPW-U:City type sewage plant waste water SPW-F :farm village sewage
plant wastewater SW-Up: upstream water SW-Do: downstream water
Fig.5 Concentrations PFCs
PFXS-C8
Concentra ti os [PF Cs ng /L ]
12.0
PFXS-C6
63 %
PFXS-C4
PFXA-C11
8.0
PFXA-C10
Wastewater from factory
PFXA-C9
PFXA-C8
4.0
PFXA-C7
6%
PFXA-C6
Sewage plant waste water
0.0
SWDo
SWM
SWUp
SWUp: upstream water SWM:middlestream water
SWDo: downstream water
Fig.6 PFCs concentration of the river water
Conclusions
まとめ
●
●
●
●
産業排水から検出されたPFCsの種類
PFOS :C4-C8, PFOA :C6-C11
検出されたPFCs 濃度
数10 ng/L-10000 ng/L ~以上
河川の濃度レベル: 'ng/L'.
都市上流 : PFCs 濃度< 1 ng/L
都市下流 : PFCs > 10 ng/L
河川への影響:工業団地排水>下水排水
Technical know-how

① Pure water for LC mobile phase
Milli-Q Water +GL-Pak Active Carbon Jr
(400mg Double connection )


② LC Gradient method
It is necessary to select the gradient method
of reducing the noise of the LC baseline.
③ Contamination control
Rinse apparatus enough by the methanol.
① Pure water for LC mobile phase
x10 2
- MRM (513.0 -> 469.0) MeOH-2WAKO-pfw-R-r005.d
5.75 1
5.5
5.25
5
4.75
4.5
4.25
4
3.75
3.5
3.25
3
2.75
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0
x10 2
12 2
Sold product ( for LC/MC )

- MRM (513.0 -> 469.0) MeOH-2pfw-new-R-r006.d
5.75 1
5.5
5.25
5
4.75
4.5
4.25
4
3.75
3.5
3.25
3
2.75
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0
12 2
Milli-Q Water +GL-Pak Active Carbon Jr

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Counts vs. Acquisition Time (min)
16
17
18
19
20
21
22
23
24
25
② LC Gradient method
x10 2
4
- MRM (463.0 -> 419.0) MeOH-1pfw-new-r005.d
1
3.8
Gradient method A baseline
3.6
3.4
12
2
AcCN 25%~90% methanol 10μL
( m / z 463→419)
3.2
3
2.8
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
x10 2
4
3.8
3.6
3.4
- MRM (463.0 -> 419.0) MeOH-2pfw-new-R-r005.d
1
Gradient method B baseline
12
2
AcCN 30%~90% methanol 10μL
(m / z 463→419)
3.2
3
2.8
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Counts vs. Acquisition Time (min)
16
17
18
19
20
21
22
23
24
25