資源の非定常性と適応的変化を考慮した最適漁獲モデル

http://risk.kan.ynu.ac.jp/matsuda/2005/050330Osaka.ppt
順応的管理が破壊する多種共存状態
Adaptive management may destroy
coexistence.
松田裕之(横浜国大・環境情報)
Hiroyuki MATSUDA (Yokohama Nat’l Univ)
2003/12/12
1
“...in a complicated food web structure, indirect
effects
of culling
top predator
(whales)ideaon
Two phenotypes
of whales-fisheries
competition
abundance of target fish is either positive or
negative,...” By Yodzis 2001 Trend Ecol Evol
Whales destroy
the ocean.
Fisheries destroy
the ocean.
By Japan Gov.
2003/12/12
2
What is one of the most important knowledge in
community ecology?
• Indeterminacy in indirect effects of community
interactions (Yodzis 1988);
• From sensitivity analysis, the total
effect between species is positive or
negative even though process errors
exist in growth rate;
• The “vulnerability” is not common
for all species, and changes with
conditions (evolutionary ecology).
2003/12/12
6
5
4
3
1
2
3
is this dream...
illusion?
Wasp-waist is a, classic
birds
seals
sardine/anchovy
pelagic
tunas
lantern fish
deep sea
Only 5 to 10 percent of us
copepods
krill
....
succeed of the weightloss industry
• Anyway, we need to investigate how to fluctuate the total biomass
of small pelagics.
2003/12/12
4
(海洋)生態系モデル
• Ecosim with Ecopath (Christensen et al.
1997)
• Fishbase
– 食性データ
– 生活史データ
• 資源量評価
• 非漁獲対象種の知見
2003/12/12
5
捕鯨 = 0,vulnerability= 0.3のときの三陸沖エコ
シムの結果(Okamura2003)
サE
バC
がO
減S
I
りM
続に
けよ
るる
。数
(
岡値
村計
二算
〇。
〇
三
)
2003/12/12
6
捕鯨 = 0,vulnerability= 0.6のときの三陸沖エコ
シムの結果(Okamura2003)
サE
バC
がO
減S
I
りM
続に
けよ
るる
。数
(
岡値
村計
二算
〇。
〇
三
)
2003/12/12
7
漁業 = 0,vulnerability= 0.3のときの三陸沖エコ
シムの結果(Okamura2003)
鯨E
がC
減O
S
りI
続M
けに
るよ
。る
(
岡数
村値
二計
〇算
〇。
三
)
2003/12/12
8
捕鯨 =×2,vulnerability= 0.3のときの三陸沖エ
コシムの結果(Okamura2003)
サE
バC
がO
増S
I
えM
るに
。よ
(
岡る
村数
二値
〇計
〇算
三。
)
2003/12/12
9
鯨類の摂食量と漁獲量
2003/12/12
10
鯨類の初期資源量と現在
2003/12/12
11
謬説:クジラ害獣論
Fallacy of whale-fishery competition as reason for culling
whales
• 鯨はカタクチイワシ、中深層性ハダカイワシなどを大量に
摂食
• 必ずしも漁業とは競合しない
• 大昔より鯨類全体としては減っている
• たくさんいるミンク鯨
を食べよう!
資料:日本鯨類研究所
2003/12/12
file: Institute for Cetacean Research
12
Whales Before Whaling in the North Atlantic
Roman J &
• DNA多様性解析:
大西洋の鯨類は商
業捕鯨以前より
ずっと少ない(差
>累積捕獲数)
Population abundance (thousands)
Palumbi SR (2003) Science 301:508-510
Historical
Current
600
300
Humpback
2003/12/12
Fin
Minke
13
大型魚類の生物体量97-99%減少説
(Jennings & Blanchard 2004 J Anim Ecol 73:632)
•
•
“We propose a method, based on
macroecological theory, to predict the
abundance and size-structure of an
unexploited fish community from a
theoretical abundance–body mass
relationship (size spectrum).
“We suggest that the current biomass
of large fishes weighing 4–16 kg and
16–66 kg, respectively, is 97·4% and
99·2% lower than in the absence of
fisheries exploitation. The results
suggest that depletion of large fishes
due to fisheries exploitation exceeds
that described in many short-term
studies.
2003/12/12
14
マグロ世界漁獲量は増え続けている
1960-90年の漁獲で9割減少
減ったマグロを取り続けている
2003/12/12
15
最大持続生産量理論の幻想
Fallacy of MSY theory
• Ecosystem is fluctuating, uncertain & complex
– MSY theory ignores all of these 3 factors
• fluctuation→adaptive management, public
involvement
• uncertainty→risk management & communication
• complex→ecosystem-based management
資源回復確率
2003/12/12
70-80 年代の漁獲圧なら
90 年代の未成魚乱獲
を続けると
16
Theory of sustainable fisheries
•
•
•
•
Fishery is an origin of sustainability.
Fish is a renewable resource.
Overexploitation will lose both conservation and future yield.
Do sustainable fisheries guarantee conservation? No!
最大持続生産量
MSY(Maximum
sustainable yield)
2003/12/12
MSY
17
2つの食物網
被食者-捕食者系
Prey-predator system
多種系
multi-species system
9
10
P
8
7
N
5
6
1
2003/12/12
4
2
3
18
Harvest of prey
(Matsuda & Abrams in review)
dN  r(1 N ) N  fN P  qEN
dt
K
1 hN










dP  d  P  bfN P
1 hN
dt
Catch of prey will
decrease predator,
rather than prey
dP/dt=0
dN/dt=0
In the case of feedback control,
dE
 U (N  S )
dt
2003/12/12
19
Feedback control in fishing effort is
powerful...
dE U N  N *


dt
dN  f ( N )  qEN
dt
N*N*
f(N)
A straw man says;
• Even though the MSY level is
unknown, the feedback
control stabilizes a broad
range of target stock level.
N*
Stock size N
2003/12/12
20
If fishing effort is regulated by stock abundance,
(Matsuda & Abrams unpublished)
dN  r(1 N ) N  fN P  qEN
dt
K
1 hN






bfN

dP  d  gP 
P
1 hN 
dt
dE/dt = u(N-NT)
2003/12/12
21
フィードバック管理は捕食者駆逐,漁業
(d)(e) (f)
崩壊、不規則変動,長期禁漁をもたらす
Prey
Fishing effort
Predator
• Feedback control may result in
extinction of either fishery or
predator.
2003/12/12
(a)
(b)
(c)
22
Feedback control with community
interactions also result in undesired
outcomes. (M & A unpublished)

dNi 
  ri   a ji N j  qei  Ni
dt
j


9
10
8
r = (0.454,1.059,1.186,0.247,-0.006,-0.028,-0.059,-0.704,-0.308,-0.238)
7
A = (aji) =
1.
0.74
0.19
0.31
0.
0.
0.
0.
0.7
0.46
0.74
1.
0.87
0.08
0.46
0.66
0.48
0.73
0.84
0.
0.19
0.87
1.
0.96
0.08
0.14
0.83
0.
0.
0.68
2003/12/12
0.31
0.08
0.96
1.
0.
0.
0.
0.28
0.
0.88
0.
0.46
0.08
0.
0.1
0.
0.
0.92
0.15
0.84
0.
0.66
0.14
0.
0.
0.1
0.01
0.
0.5
0.69
0.
0.48
0.83
0.
0.
0.01
0.1
0.56
0.
0.
e9 = 0.1, ei = 0
0.
0.73
0.
0.28
0.92
0.
0.56
0.1
0.28
0.
0.7
0.84
0.
0.
0.15
0.5
0.
0.28
0.1
0.
0.46
0.
0.68
0.88
0.84
0.69
0.
0.
0.
0.1
5
6
1
4
2
3
23
Feedback control may result in extinction of other
species (sp. 6).
ratio
de9/dt = u(N9-N9*)
2003/12/12
24
Notice on feedback control
• Single stock monitoring is dangerous
• Target stock level is much more sensitive
than we have considered in single stock
models.
• We must monitor not only stock level of
target species, but also species that
interacts with the target species.
2003/12/12
25
Total Allowable Catch rule
乱獲
BF=0
PP
2003/12/12
26
If fishing effort is a function of stock abundance,
• 1種系
2003/12/12
27
2種系
Prey
Predator
2003/12/12
28