Self-gravitating Stellar Systems and Non

1
流体ブラックホールの
ホーキング輻射と
準正規振動
京都大学 人間・環境学研究科
阪上雅昭 ,奥住聡
物理学会誌 11月号 解説 掲載予定
BlackHole spacetime (1)
2GM
r  RH  2
c
v  c
M
Local
Inertial frame
r 
Free falling
2GM
v
r
v0
Horizon
Local inertial frame falls down with light velocity
Light cannot escape from the horizon
Stretching effect: tidal force (falling vel. Is dependent on r)
BH spacetime (2)
Stretching effect: tidal force
Horizon
Local inertial frame falls at light velocity
Free falling
Local inertial frame
3
Hawking Radiation : particle creation
4
Energy Emittion from BH
Photon (positive energy)
Photon
(negative energy)
Created photon number
Tidal force breaks up virtual photon pair
Stretching of wave function due to
Tidal force occurs
 N  
1
e 2   1

Surface gravity
T
2 k B
vel. gradient at horizon

Hawking Radiation (2) wave dynamics
5
General Relativity + Quantum Theory
Vacuum in past infinity
Negative freq.
Tidal Force
Collapse
Stretching
Observer
Positive freq. part
appears
⇒particle creation
BH
horizon
0
ei  ( t r / c )
Infinity
Star before
Vacuum
gravitational Collapse
Acoustic Black Hole
Correspondence between BH and its sonic analogue
Black Hole spacetime
light
Horizon
Horizon plays essential role in
Hawking radiation
Observation of HR is quite difficult
flow with sonic point
sound wave
Sonic Horizon
We can easily realize acoustic
black hole In laboratories.
In case of BEC
T  7 nk
7
Sound Waves in Perfect Fluid
p   const.




v


 v  p
Euler eq. 
dp p
2

t
cs 



d 


continuity
   (  v)  0
  v  0  v  Φ
t
(t, x)  0 ( x)   (t, x)
 (t, x)  0 ( x)   (t, x)
adiabatic
irrotational
0  
0  

 0  




v

v



  ( x, t )    0 ( x, t )  0
0
0
2 
 t
 cs  t

wave equation for perturbed part of velocity potential
This simulates wave propagation in curved spacetime:
e.g. black hole.
8
Two Types of Flow in Laval Nozzle
p0  p1
p0
M 0
2
1.75
M
1.5
flow p1
M 1
1.25
1
0.75
dA  0
throat
0.5
dA  0 dA  0
flow
0.25
-0.1
dv  0
transonic
flow
subsonic
flow
-0.05
throat
dv  0 → dv  0
:subsonic flow
M  1 → dv  0
:transonic flow
p0 p1 determineswhich type of flow
is realizedin theLavalnozzle.
0.05
0.1
Laval Nozzle: Horizon のある流れ
A

流体の密度
v
流体の速度
連続の式
ベルヌーイの式
(1)
1 2
v  h(  )  const
2
h(  )  
(1)(2)の微分から
d 
断面積
v
 v A  const
圧力関数
9
p(  )
を消去
dp


(2)
音速

cs2d

cs 
dp
d
10
Sonic Horizon
dv dA
M 1 v  A
v
マッハ数 M  c
s
Laval Nozzleでの流れ
2
M  1 dA  0 
 dv  0
M  1 dA  0 
 dv  0
M 1
加速
減速
M 1
M 1
M 1
加速
M 1
M 1
さらに加速
11
“Acoustic Hawking Radiation”
propagation of downstream-region modes
in subsonic-transonic flow
Stretching
gravitational collapse
negative freq. mode
 i ( t  x cs )
sonic point(x=0)
e
cs  v   x
Positive freq
component creation!
(  0)
x
Acoustic BH
subsonic flow
transonic flow
d
“surface gravity”  
cs  v 
dx
x 0
12
Results (waveform observed upstream)
incident freq:15kHz
horizon appeared
at the throat
affected portion
by surface gravity
Re[p(t )]  Re[(t )]
Spectrum of Acoustic Hawking Radiation
(WKB analysis)
Fourier component
~
 ()  

0
dz i z
e
z
csH
z i 
c 
  sH 
 
 i 
e 2  i  
downstream region upstream region
negative frequency positive frequency
1
~ 2 2
 ( ) 
 exp( 2
 ) 1
Furthermor e, p( x, t ) 
 ( x, t )
in the upstream region,
t
2
~p ( ) 

exp( 2
 ) 1
13
14
Results (power spectrum of δp(t) )
Negative freq.
Positive freq.
incident freq:15kHz
sinusoidal portion(t<0)
zoom(next)
15
Numerical Results (power spectrum of δp(t) )
Negative freq.
Positive freq.
penetrates into positive
frequency range!
zoom(next)
16
Numerical Results (power spectrum of δp(t) )
5 10
7
Planckian fit
7
3 10
7
  11700 rad/s
S f
4 10
2 10
7
1 10
7

500

exp( 2
 ) 1
1000
1500
f Hz
2000
2500
3000
Summary
17
ホーキング輻射
時空の非定常進化:
粒子生成
Horizon の無い時空
horizon のある時空
負エネルギーモード から 正エネルギーモードへのしみだし
0
 0
Horizon 近傍でのStretch 効果
粒子生成のスペクトル
Planck 分布
モードが指数関数的でなくなる
Acoustic Black Hole by Laval Nozzle
Hawking 輻射を実験室で検証できる
Quasi-normal Mode
outgoing BC
時間的には減衰,空間的には発散する
メゾスコピック系の電気伝導と類似
“Acoustic BH” Experiment Project
at Kyoto University
THEORY
EXPERIMENT
Cosmology and Gravity Group
Graduate School of Engineering
numerical
Planckian fit
TARGETS
• Hawking Radiation
•Quasinormal Modes
18
イオン音波
(1) Continuity eq.
n 

(n u )  0
t  z
(2) Motion of eq.
u
u

m n[
u
]  en
t
z
z
(3) Poisson eq.
e
 2
e
 2  ( n  n0 exp[
])
0
k B Te
z
Z  1, Te  Ti
u  u1
n  n0  n1
  1

electron
1
ion

Te 12
 ( )  CS
k
mi
CS
Ion Acoustic Wave
n1 electron
n1
e 1

n0
Te
(electro static wave)
exp: CS ~1.5x106 cm/s for He
kD
k
直線型プラズマ実験装置(HPX)
流速生成用筒電極
流速計測用Machプローブ
プラズマパラメータ
外部磁場
下流
上流
エンド
プレート
36cm
150cm
プラズマ空間
計測用駆動
プローブ
イオン音波Exciter
径
(
r
)
方
向
軸(z)方向
He plasma
生成法:ICP Heガス
ICP:13.56MHz,1kW
ガス圧:~1.0mTorr
密度:~109[cm-3]
電子温度:~10eV
磁場:25~100Gauss
イオンラーマ半径:
Pyrex tube(5cm φ) 1.0~3.5cm
プラズマ半径:≒3.0cm
90cm
プラズマ生成部
筒電極半径:≒2.5cm
5cm
イオン音波Receiver
i-n平均自由行程:
~40cm
ExciterとReceiver
間距離:36cm
21
22
遷音速流の上流で受信したイオン音波のスペクトル
音速点形成前のスペクトル
速度ポテンシャル:
(BHの表面重力に相当)
  Cs 
dM
dz
音速点形成後のスペクトル
音速点の波の引き延ばし
によるプランク分布

2
n~( ) 
2
exp(
) 1

Numerical Simulation of Acoustic QN Ringing
We perform two types of simulations:
“Acoustic BH Formation”
initial state: no flow
set sufficiently large
pressure difference
final state: transonic flow
~ BH formation
“Weak Shock Infall”
initial state: transonic flow
‘shoot’ a weak shock
into the flow
final state: transonic flow
~ test particle infall
24
Weak Shock Infallの例
Numerical
QNM fitting