1 流体ブラックホールの ホーキング輻射と 準正規振動 京都大学 人間・環境学研究科 阪上雅昭 ,奥住聡 物理学会誌 11月号 解説 掲載予定 BlackHole spacetime (1) 2GM r RH 2 c v c M Local Inertial frame r Free falling 2GM v r v0 Horizon Local inertial frame falls down with light velocity Light cannot escape from the horizon Stretching effect: tidal force (falling vel. Is dependent on r) BH spacetime (2) Stretching effect: tidal force Horizon Local inertial frame falls at light velocity Free falling Local inertial frame 3 Hawking Radiation : particle creation 4 Energy Emittion from BH Photon (positive energy) Photon (negative energy) Created photon number Tidal force breaks up virtual photon pair Stretching of wave function due to Tidal force occurs N 1 e 2 1 Surface gravity T 2 k B vel. gradient at horizon Hawking Radiation (2) wave dynamics 5 General Relativity + Quantum Theory Vacuum in past infinity Negative freq. Tidal Force Collapse Stretching Observer Positive freq. part appears ⇒particle creation BH horizon 0 ei ( t r / c ) Infinity Star before Vacuum gravitational Collapse Acoustic Black Hole Correspondence between BH and its sonic analogue Black Hole spacetime light Horizon Horizon plays essential role in Hawking radiation Observation of HR is quite difficult flow with sonic point sound wave Sonic Horizon We can easily realize acoustic black hole In laboratories. In case of BEC T 7 nk 7 Sound Waves in Perfect Fluid p const. v v p Euler eq. dp p 2 t cs d continuity ( v) 0 v 0 v Φ t (t, x) 0 ( x) (t, x) (t, x) 0 ( x) (t, x) adiabatic irrotational 0 0 0 v v ( x, t ) 0 ( x, t ) 0 0 0 2 t cs t wave equation for perturbed part of velocity potential This simulates wave propagation in curved spacetime: e.g. black hole. 8 Two Types of Flow in Laval Nozzle p0 p1 p0 M 0 2 1.75 M 1.5 flow p1 M 1 1.25 1 0.75 dA 0 throat 0.5 dA 0 dA 0 flow 0.25 -0.1 dv 0 transonic flow subsonic flow -0.05 throat dv 0 → dv 0 :subsonic flow M 1 → dv 0 :transonic flow p0 p1 determineswhich type of flow is realizedin theLavalnozzle. 0.05 0.1 Laval Nozzle: Horizon のある流れ A 流体の密度 v 流体の速度 連続の式 ベルヌーイの式 (1) 1 2 v h( ) const 2 h( ) (1)(2)の微分から d 断面積 v v A const 圧力関数 9 p( ) を消去 dp (2) 音速 cs2d cs dp d 10 Sonic Horizon dv dA M 1 v A v マッハ数 M c s Laval Nozzleでの流れ 2 M 1 dA 0 dv 0 M 1 dA 0 dv 0 M 1 加速 減速 M 1 M 1 M 1 加速 M 1 M 1 さらに加速 11 “Acoustic Hawking Radiation” propagation of downstream-region modes in subsonic-transonic flow Stretching gravitational collapse negative freq. mode i ( t x cs ) sonic point(x=0) e cs v x Positive freq component creation! ( 0) x Acoustic BH subsonic flow transonic flow d “surface gravity” cs v dx x 0 12 Results (waveform observed upstream) incident freq:15kHz horizon appeared at the throat affected portion by surface gravity Re[p(t )] Re[(t )] Spectrum of Acoustic Hawking Radiation (WKB analysis) Fourier component ~ () 0 dz i z e z csH z i c sH i e 2 i downstream region upstream region negative frequency positive frequency 1 ~ 2 2 ( ) exp( 2 ) 1 Furthermor e, p( x, t ) ( x, t ) in the upstream region, t 2 ~p ( ) exp( 2 ) 1 13 14 Results (power spectrum of δp(t) ) Negative freq. Positive freq. incident freq:15kHz sinusoidal portion(t<0) zoom(next) 15 Numerical Results (power spectrum of δp(t) ) Negative freq. Positive freq. penetrates into positive frequency range! zoom(next) 16 Numerical Results (power spectrum of δp(t) ) 5 10 7 Planckian fit 7 3 10 7 11700 rad/s S f 4 10 2 10 7 1 10 7 500 exp( 2 ) 1 1000 1500 f Hz 2000 2500 3000 Summary 17 ホーキング輻射 時空の非定常進化: 粒子生成 Horizon の無い時空 horizon のある時空 負エネルギーモード から 正エネルギーモードへのしみだし 0 0 Horizon 近傍でのStretch 効果 粒子生成のスペクトル Planck 分布 モードが指数関数的でなくなる Acoustic Black Hole by Laval Nozzle Hawking 輻射を実験室で検証できる Quasi-normal Mode outgoing BC 時間的には減衰,空間的には発散する メゾスコピック系の電気伝導と類似 “Acoustic BH” Experiment Project at Kyoto University THEORY EXPERIMENT Cosmology and Gravity Group Graduate School of Engineering numerical Planckian fit TARGETS • Hawking Radiation •Quasinormal Modes 18 イオン音波 (1) Continuity eq. n (n u ) 0 t z (2) Motion of eq. u u m n[ u ] en t z z (3) Poisson eq. e 2 e 2 ( n n0 exp[ ]) 0 k B Te z Z 1, Te Ti u u1 n n0 n1 1 electron 1 ion Te 12 ( ) CS k mi CS Ion Acoustic Wave n1 electron n1 e 1 n0 Te (electro static wave) exp: CS ~1.5x106 cm/s for He kD k 直線型プラズマ実験装置(HPX) 流速生成用筒電極 流速計測用Machプローブ プラズマパラメータ 外部磁場 下流 上流 エンド プレート 36cm 150cm プラズマ空間 計測用駆動 プローブ イオン音波Exciter 径 ( r ) 方 向 軸(z)方向 He plasma 生成法:ICP Heガス ICP:13.56MHz,1kW ガス圧:~1.0mTorr 密度:~109[cm-3] 電子温度:~10eV 磁場:25~100Gauss イオンラーマ半径: Pyrex tube(5cm φ) 1.0~3.5cm プラズマ半径:≒3.0cm 90cm プラズマ生成部 筒電極半径:≒2.5cm 5cm イオン音波Receiver i-n平均自由行程: ~40cm ExciterとReceiver 間距離:36cm 21 22 遷音速流の上流で受信したイオン音波のスペクトル 音速点形成前のスペクトル 速度ポテンシャル: (BHの表面重力に相当) Cs dM dz 音速点形成後のスペクトル 音速点の波の引き延ばし によるプランク分布 2 n~( ) 2 exp( ) 1 Numerical Simulation of Acoustic QN Ringing We perform two types of simulations: “Acoustic BH Formation” initial state: no flow set sufficiently large pressure difference final state: transonic flow ~ BH formation “Weak Shock Infall” initial state: transonic flow ‘shoot’ a weak shock into the flow final state: transonic flow ~ test particle infall 24 Weak Shock Infallの例 Numerical QNM fitting
© Copyright 2024 ExpyDoc