Magnetic properties of a frustrated nickel cluster with a butterfly structure RIKEN Masayuki HAGIWARA Outline Introduction Crystal structure Magnetic susceptibility High field magnetization Evaluation of the exchange constants ESR Evaluation of the single ion anisotropy constants Temperature evolution of magnetization process in a pulsed field Summary Molecular magnet Mn12O12(CH3COO)16(H2O)4 Magnetization curves Mn12-Acetate Discrete double well structure Mn3+(S=2) 8 ions S=10 Mn4+(S=3/2) 4 ions Quantum tunneling Frustration Geometrical frustration Antiferromagnetic exchange interactions ? Triangle lattice Tetrahedron Kagome lattice Railroad trestle Frustrated molecular magnet Molecular magnet Mn12, Fe8, V15 etc. Frustrated system Triangle lattice etc. Frustrated molecular magnet Butterfly structure (Diamond structure) Sample preparation & Apparatus Experimental Sample preparation Slow evaporation method from aquaous solution vigorously stirring during 24 h Ni(ClO4)6H2O, (2-aminoethyl)-pyridine Single crystals chemical analysis C H N Cl cald. 40.26 4.67 12.96 8.20 found 40.17 4.59 12.86 8.20 Apparatus Magnetic susceptibility Static magnetization High field magnetization ESR SQUID magnetometer MPMS-XL7 at KYOKUGEN Pulse magnet at KYOKUGEN Home made ESR spectrometer ~50 GHz ABmm network analyzer ~400 GHz 16 T superconducting magnet at RIKEN FIR laser & pulse magnet ~1.3 THz at KYOKUGEN Unit structure of Ni tetramer Ni tetramer unit structure of [Ni4(-CO3)2(aetpy)8][ClO4] aetpy=2-aminoethyl-pyridine c-axis [1,1,0] a a [001] projection [110] projection Ni J2 J2 J3 O C N a-axis J2 J1 J2 Body frame A. Escuer et al., J. Chem. Soc., Dalton Trans., 1998, 3473. Tetragonal a-axis Crystal structure (packing) Crystal structure (packing) c c a a a [110]-projection Ni O C Tetragonal Space group P4(2)(1)2 a [001]-projection a=14.523(4) A c=16.566(5) A c-axis a-axis Magnetic susceptibility (H // c) 5.0 H // c-axis H=1000 Oe 4.5 1.0 4.0 3.5 [Ni4(-CO3)2(aetpy) 8][ClO 4] 0.5 3.0 Single crystal 2.5 0.0 0 50 100 150 200 T emperature (K) 250 2.0 300 Similar results for H // a T (emu K/mol) Susceptibility (emu/mol) 1.5 High field magnetization H // c-axis H // a-axis 2.0 Magnetization ( B / Ni) Magnetization ( B / Ni) 2.0 1.5 1.0 Single crystal H // c-axis T=1.3 K 0.5 0.0 1.5 1.0 Single crystal H // a-axis T=1.3 K 0.5 0.0 0 10 20 30 40 50 Magnetic field (T) 60 70 0 10 20 30 40 Magnetic field (T) ½ and ¾ magnetization plateaus are observed with large hysteresis. The transition field from the ½ plateau to the ¾ plateau for H // a is nearly identical to that for H // c. 50 60 Spin Hamiltonian Assumption because of the similarity of the magnetizations for H // a and H //c. H =J1S1S2+J2(S1S3+S1S4+S2S3+S2S4)+J3S3S4+gBH(S1z+S2z+S3z+S4z) Evaluation of J1 and J2 The transition fields are independent of J3. The exchange constants are evaluated from the analyses of magnetization curve. H1=40.7 T, H2=69 T g=2.2 J1/kB=41.9 K (29.1 cm-1), J2/kB=9.2 K (6.4 cm-1) Evaluated values from susceptibility J1/kB=28.6 cm-1, J2/kB=7.9 cm-1, g=2.16 A. Escuer et al., J. Chem. Soc., Dalton Trans., 1998, 3473. E Energy diagram ~ J 1 -3J 2 14 K 0 J3 Expanded 2J 3 J 3 <0 (Ferromagnetic) J 3 >0 (Antiferromagnetic) J3 plus or minus? Determination of J3 by fitting Magnetic susceptibility 1.2 5.0 H // c-axis H=1000 Oe 4.0 J1//kB=49.7 0.5 K J /k =9.3 0.2 K 3.5 J3/kB=-0.630.02 K 3.0 2 B g=2.229 0.002 2.5 0.0 0 50 100 150 200 250 2.0 300 Temperature (K) J3/kB=-0.6∼0.7 K (Ferromagnetic) Magnetization (B /Ni) 1.0 0.5 1.0 4.5 T (emu K/mol) Susceptibility (emu/mol) 1.5 Magnetization (static) 0.8 T=2.0 K 0.6 T=4.2 K H // c-axis 0.4 J3/kB=-0.66±0.04 K g=2.191±0.004 0.2 0.0 0 1 2 3 4 5 6 Magnetic Field (T) Magnetization is calculated from the lowest singlet, triplet and quintet states. 7 ESR spectra (H // c) Pulsed field Static field 441.7 GHz 1623.4GHz 215.0 GHz 161.0 GHz 140.0 GHz 122.5 GHz 113.8 GHz H // c T=1.6 K 80.1 GHz 1392.8GHz ESR signal (arb. units) ESR signals (arb.units) 322.7 GHz 1182.0GHz 1017.6GHz 977.2Hz 847.0Hz 730.5GHz H // c T=1.3 K 655.7GHz 64.1 GHz 584.8GHz 0 2 4 6 8 10 Magnetic field (T) 12 14 0 10 20 30 40 Magnetic field (T) 50 60 Frequency-field diagram (H // c) 2000 3.5 3.0 g=2.18, Eg=67.5GHz 1500 2.5 g=2.20, Eg=30..7GHz 2.0 1000 1.5 1.0 500 0.5 0 0 10 20 30 40 50 Magnetic field (T) 60 0.0 70 Magnetization ( B/Ni) Frequency (GHz) H // c Determination of D value 1000 215GHz, 10K 1017.6GHz, 4.2K 1000 E B' A D C' D' C D B A' 0 Energy (GHz) Energy (GHz) 500 B E DPPH C A 0 A -1000 A B B -2000 -500 Black D1=D2=-4.0K Blue D1=D2=-3.4K 0 2 4 6 41.8T Quintet Septet 8 10 Magnetic field (T) D/kB= -4.0K , -3.4K 12 14 26 28 30 32 34 36 Magnetic field (T) 38 40 42 Magnetic parameter values ESR (static & pulse) g=2.2±0.02 J1/kB=41.9±0.5 K High field magnetization J2/kB=9.2±0.3 K Magnetization J3/kB=-0.65±0.05 K & susceptibility D= -4.0±0.1 K , -3.4±0.1 K ESR (static & pulse) We can determine the magnetic parameter values by making a comparison between calculations and various kinds of experiments. A fine tuning of the parameters is needed. ESR signals (Arb.units) ESR spectra (H // a) 132.6GHz 128.6GHz 124.2GHz 119.3GHz 116.0GHz 110.0GHz 102.2GHz 94.9GHz 90.8GHz 85.0GHz 81.7GHz 75.7GHz 73.9GHz 70.9GHz 68.1GHz 61.6GHz 58.8GHz 57.2GHz 51.9GHz 47.0GHz 42.0GHz 37.0GHz 0 2 4 6 8 Magnetic field (T) low frequency 225.2GHz 166.1GHz 150.1GHz 142.0GHz 137.8GHz 399.9GHz 329.9GHz 262.7GHz 249.1GHz 247.4GHz H // a T=1.6 K 10 12 14 Frequency-field diagram (H // a) 1100 1000 H // a Frequency (GHz) 900 800 700 g=4.165 g=4.276 600 500 g=2.182 g=2.183 g=2.178 g=2.160 400 300 200 100 0 0 5 10 15 20 25 Magnetic field (T) 30 35 Temperature dependence of the spectra H // c-axis H0||c-axis H // a-axis 4.2K 215.0GHz 166.1GHz 1.5K H0||a-axis 10.0K 20.0K ESR signals ESR signals 4.2K 10.0K 20.0K 40.0K 40.0K 80.0K 0 2 4 6 8 10 Magnetic field /T 12 14 0 2 4 6 8 10 Magnetic field /T 12 14 Origins of hysteresis & magnetization Magnetization behavior depends on the field sweep rate and the magnitude of the energy gap. The magnetization at T=>0 K due to a thermal origin differs from that due to a quantum one. Temperature evolution of M curves Field increasing Field decreasing 2.0 2.0 Descending process H // c-axis 1.5 1.0 T=90 mK T=300 mK T=600 mK T=900 mK T=1.3 K T=4.2 K 0.5 Magnetization ( B /Ni) Magnetization ( B /Ni) Ascending process H // c-axis 1.5 1.0 T=90 mK T=300 mK T=600 mK T=900 mK T=1.3 K T=4.2 K 0.5 0.0 0.0 0 10 20 30 40 50 Magnetic field (T) with decreasing temperature 0 10 20 30 40 50 Magnetic field (T) Nearly identical behavior below 1.3 K Hysteresis around 40 T 1.5 T=900 mK H // c-axis 1.5 1.4 1.0 Ascending process 0.5 Descending process Magnetization ( B /Ni) Magnetization ( B /Ni) 2.0 H // c-axis 1.3 1.2 T=90 mK T=90 mK T=300 mK T=300 mK T=600 mK T=600 mK T=900 mK T=900 mK T=1.3 K T=1.3 K 1.1 Ascending Descending 1.0 0.9 0.0 0 10 20 30 40 Magnetic field (T) 50 25 30 35 40 45 Magnetic field (T) Magnetization in ascending process nearly coincides with that in descending process at 900 mK around 40 T. 50 Energy branches vs magnetic field Energy (GHz) 2000 100 GHz ≈4.8 K 0 -2000 Nonatet Septet Singlet Triplet Quintet -4000 -6000 19.5T 0 20 H1 41.8T 40 Magnetic field (T) H2 60 66.4T 80 Magnetization process in field ascending process This step is probably caused by “magnetic föhn effect. 2.0 E Magnetization ( B /Ni) Ascending process H // c-axis 1.5 1.0 T=90 mK T=300 mK T=600 mK T=900 mK T=1.3 K T=4.2 K 0.5 0.0 0 10 20 30 40 Magnetic field (T) 50 ~20 T ~41 T H Magnetization process in field descending process E 2.0 Quantum origin Magnetization ( B /Ni) Descending process H // c-axis 1.5 1.0 T=90 mK T=300 mK T=600 mK T=900 mK T=1.3 K T=4.2 K 0.5 0.0 0 10 20 30 40 Magnetic field (T) 50 ~20 T ~41 T H Summary 1. We performed high field magnetization and ESR experiments on single crystals of the Ni tetramer cluster compound [Ni4(-CO3)2(aetpy)8][ClO4]. 2. We observed step wise magnetizations with ½ and ¾ magnetization plateaux in a magnetic field up to 70 T. 3. We observed several ESR lines with g~2.2 and 4.4. 4. All the magnetic parameters including exchange constants as shown in the figure are evaluated: J1/kB=41.9 K (29.1 cm-1), J2/kB=9.2 K (6.4 cm-1) J3/kB= -0.6~0.7 K, D/kB=-3.3 K, D’/kB=-4.0 K 5. We observed interesting temperature dependence of magnetization hysteresis near the second step. Acknowledgements Collaborators RIKEN Haruhiko Yashiro (HF ESR static) KYKUGEN, Osaka University Akira Matsuo (HF magnetization) Shojiro Kimura (HF ESR pulse) Yasuo Narumi (HF magnetization static magnetization) Koichi Kindo (Pulse experiments)
© Copyright 2025 ExpyDoc