M180 EN GUY WIRED TOWERS Mounting Instructions w w w. t e l e v e s . c o m WARNING Trestle-tower installations should only be calculated and constructed by specialised professionals as these fall under their responsibility; the mounting instructions provided in this technical sheet are intended for information only, and the data given does not, in any way, affect the responsibility of the manufacturer who only guarantees his own products, provided that they are used under normal conditions. It will be necessary to conduct a project to install the tower for each specific site, which should take into account both the individual stresses and the recalculation of foundations in accordance with the relevant geotechnical study. The towers will be assembled by competent personnel and skilled in climbing, using all means of protection required to safeguard the security in vertical works. Remenber that international legislation requires for any structure higher than 3m a climber safety device. The use of Televes tower sections with non-Televes products may cause tower failure and even personal injury. Televes is not responsible of the misused of its products. TOWER M180 4 1. Location 5. Tower mounting The calculations shall be made for a generic site, in conditions where the wind speed can reach 160 km / h, and considering an ice sleeve of 1 cm diameter for a wind speed of 75 Km/h. It has also been considered acceptable a ground resistance of 1.5 Kg/cm2 (normal compact ground). Section by section mounting Definitions: Basic wind speed: The average speed of instantaneous speeds (peak gusts) measured at intervals of time T = 3s, in open exposure (exposure C) at the reference height Z = 10m which has a probability of being exceeded once in 50 years. Exposure C: Is an open terrain with scattered obstacles which height is generally less than 9.1 m. This category includes flat, open country and grasslands and shorelines in hurricane-prone areas. 2. Regulations applied This is done by fixing the lower section to the base and placing it in the upright position, ensuring that it is levelled. Next, are mounted the remaining intermediate sections, that should have the corresponding guy wires already fastened. The mounting process is carried out by climbing up the sections that have already been erected and then lifting the next section that is to be fixed with the adequate lifting equipment. The climb up the trestle-tower should be carried out using the adequate safety measures (safety belt, anchorages, etc.) and no more than two consecutive sections should be erected without being secured by guy wires. When two sections without guy wires have to be erected consecutively, auxiliary guy wires should be used to secure the sections while they are being mounted. The tower should be continuously levelled via the adjustment of the guy wire tension and the use of the appropriate levelling equipment. 6.- Reference description 3048 Reference The legislation that has been the basis for the calculation is as follows: - Standard NBE-EA-95 (Steel). - Standard EHE-98 (Concrete). - Norma TIA/EIA(1)-222-G. - Norma NBE-MV-101. - Eurocodes EN1990, EN1991, EN1993. Description Pivoting base for tower M180 Material (1) Steel F626 (S 235) 8 mm thickness plate. Re min. 235 N/mm2 Rn min. 340 N/mm2 (2) Steel - M24 Finishing Galvanised 10 ± 1µm thickness + Bichromated + R.P.R. (Reactive Protection Process) Weight 5,6 Kg 3. The solution chosen It has been considered standard steel structural tubes ST37-2, standard steel rods S275JR, and steel plate S235. For the design, was chosen equal size of all sections of the tower in order to facilitate their manufacture and assembly on site. 4. Structural definition of the tower The tower has a triangular base and is made up with standard sections of 3 m each. Each section consists of: • • Description Low section M180 (1) Steel ST 37-2 Ø 20 x 2 mm thickness. Re min. 235 N/mm2 - Rn min. 360/510 N/mm2 Tubular legs made of steel. Solid bracing rods, horizontal and inclined steel. The horizontal section of the tower defines an equilateral triangle with side of 16 cm, which is the distance between legs. Horizontal bracing rods are spaced 30 cm. The lower section of the tower is pivoted on the base (see par. 11. - Technical Documentation). The tower is guy wired with anchoring supports at 120 ° (see fig. 2). 3037 Reference (2) Steel S 275 JR Ø 6 mm thickness. Re min. 275 N/mm2 - Rn min. 410/560 N/mm2 Material (3) Steel F626 (S 235) 10 mm thickness plate. Re min. 235 N/mm2 - Rn min. 340 N/mm2 Weight 12,8 Kg Finishment * Galvanised 10 ± 1µm thickness + Bichromated + R.P.R. (Reactive Protection Process) Surface facing the wind 0,27 m2 x 1,2 (coefficient.) = 0,273 m2 (1) TIA = Telecommunications Industry Association EIA = Electronic Industrials Association 5 Description Material - To avoid damaging the threaded joints between sections during handling, they are supplied with a plastic plugs. 3031 Reference Middle section tower M180 - Once on erecting site and before mounting the tower, you must proceed to remove all plugs(ver fig. 1) (1) Steel ST 37-2 Ø 20 x 2 mm thickness. Re min. 235 N/mm2 - Rn min. 360/510 N/mm2 (2) Steel S 275 JR Ø 6 mm Re min. 275 N/mm2 - Rn min. 410/560 N/mm2 Weight 11,2 Kg Finishing Galvanised 10 ± 1µm thickness + Bichromated + R.P.R. (Reactive Protection Process) Surface facing the wind 0,236 m2 x 1,2 coef. = 0,283 m2 EN 3032 Reference Description Material Upper section tower M180 (1) Steel ST 37-2 Ø 20 x 2 mm thickness. Re min. 235 N/mm2 - Rn min. 360/510 N/mm2 (2) Steel S 275 JR Ø 6 mm thickness. Re min. 275 N/mm2 - Rn min. 410/560 N/mm2 Weight 11,4 Kg Finishing Galvanised 10 ± 1µm thickness + Bichromated + R.P.R. (Reactive Protection Process) Surface facing the wind 0,227 m2 x 1,2 coef. = 0,272 m2 Fig. 1 3058 Reference Description Guy wire anchoring ring. Material Steel F621 - 10 mm Ø. Weight 0,6 Kg TOWER M180 6 Foundation of the tower base 7. Foundations The foundations (which are indicated just for guidance) are estimated for a soil resistance of 1.5 Kg/cm2, although could be accepted a soil resistance of 1Kg/ cm2. The concrete must have a minimum resistance of 15 N/mm2 (HA-25), and the work control level is estimated as reduced. Each concrete footing will bear steel reinforcement on top and bottom.. Depending on the specific site, geotechnical study and level of control, the calculations should be reconsidered. Plant view Anchor Point Side view Fig. 3 Center fundationl Foundation for guy wire anchoring ring Anchor Point Anchor Point Anchor Point Guy Wire direction (*) Plant view (*) Reinforcements Side view Arragement of Foundation (*) It wil be used an anchoring ring per guy wire Fig. 2 Foundation details The ilustration is made just as an example. Each facility will be subject to a customized assessment. Fig. 4 7 FOUNDATIONS CHART (just for guidance) Tower Height (m) 26,5 23,5 20,5 17,5 14,5 11,5 8,5 Tower base foundation Zapatas Anchor ring foundation “A” (cm) “B” (cm) “h” (cm) “A” (cm) “B” (cm) “h” (cm) 50 50 33 150 150 100 Dimensions - Reinforcement Dimensions 40 40 7 Ø14 C/20 27 130 - Reinforcement 40 Dimensions Reinforcement 40 40 40 27 120 Dimensions 40 40 27 110 Dimensions 40 Reinforcement 40 27 100 40 Reinforcement 40 - 80 110 73 100 67 5 Ø12 C/20 27 90 - Dimensions 120 6 Ø12 C/20 - Reinforcement EN 6 Ø12 C/20 - Reinforcement 87 6 Ø12 C/20 - Dimensions 130 90 60 5 Ø12 C/20 27 80 80 53 4 Ø12 C/20 8. Stucture (Sections & Guy wires) (*) The guy wire clamps must be readjusted later after the first wire pull. The body of the guy wire clamp must be mounted over the live end of the cable and all of them in the same position, as shown in the figure. (*) Fig. 5 TOWER M180 8 9. Important advice In order to preserve the characteristics of the tower at a given site, it will require periodic inspection of the tension of the guy wires, and check tightness of bolts; for example, it is advisable do this between October 1 and January 1 of each year. It is also recommended to check the whole structure after strong wind or ice storms or other extreme conditions. Also, we recommend regular checking of the structure in areas of high concentration of salinity (shoreline areas) and areas with corrosive environments. Will be discarded sections in which is appreciated deformations during transportation, assembly, dismantling or useful life of the tower. It should be annual checks and repairs, if any, of all incidents reported. 5.94P 2 WLN2 TM= 5.94P 2 WV TA= TM - where: TA TM W L TA= 2 2 WH + 2L 2 2L 2 WV TM - WH + 2L 2L = Guy wire tension at the anchor, in newtons (N). = Guy wire tension at the middle of its length, in newtons (N). = Total weight of the guy wire, including insulation, .. etc, in newtons(N). 2 2 +V =L= GuyHwire length, in meters (m). L= H 2 + V 2 H = Horizontal distance from the cable clamp on the tower and the guy wire anchor, in meters 2(m). 2 WC H + (V-I) = V = VerticalT Adistance from the cable clamp on the tower and the guy wire 2 W L NH I T = M anchor, in meters 2 5.94P(m). 2 2 N = NumberT of= complete oscillations or pulses measured in a period of P WC H + (V-I) HI seconds. A P = Period of time measured for N pulses or oscillations. 2 in seconds, 2 - Misalignments and deformations. - Check welds. - Check painting. - Check cable joints. - Check cables. - Cable tension (measurement *). * The cable tension measure is subject variations depending on the wind and Do not measure or adjust cables in high wind conditions. WLN2 TM= to slight temperature. TA= T 2 - W V 2 + W H S HM + (V-I) 2L 2L T A= Instead of creating a pulse traveling up and down the cable winds, you can get HI the same result byW making the cable winds swing freely from side to side while LN2 T M = S H22 +2 (V-I) 2 measuring the L Nto make N complete oscillations. The above formulas can T Atime =W 5.94P T = H I 2method. also be usedMwith this 5.94P N S= W iC i i=1 2 2 WV WH = intersection T M - 2 + of 2the tangent or warping (see figure 10) N 2. Method ofT Athe 2 2 V2L W H2L H +- W VWi C =imaginary S=T + i AL= It is drawn Tan tangent line from the point where the guy wire end is M i=1 10. How to measure guy wire tensions (Legislation) TA= This section provides guidelines to measure “in situ” the tension of the guy wires. There are two main methods: the direct and the indirect method. A dynamometer (load cell) with an instrument for length adjustment, as a tensor, which is added to the guy wire system, and being attached to the turnstile just above it, and to the anchor point just below the turnstile. Next, the turnbuckle is tensioned until the original turnstile begins to loosen. At this time, the dynamometer supports the entire load of the guy wire up the anchor point. Then, the tension of the guy wire can be measured directly on the dynamometer. You can use this method to set the proper tension, adjusting the turnbuckle until you can read the proper tension on the dynamometer. The control points are marked, one above the attachment point on the guy wire, and another on anchor point on the tower. This way, the control’ length can be measured. Then, remove the dynamometer and the turnbuckle; and the original turnstile is adjusted to maintain the previously measured length control. 2 H + (V-I) 2 H M 2L 2 H + (V-I) 2 2L 2 2 where: = 1+tan H C = Horizontal length measured from the anchor point of the guy wire on the tower to its center of gravity W, in meters (m). 2 2 S H + (V-I) T A = of the tangent, I = Intersection 2 in meters (m). HI 2 H + (V-I) 2 2 H +H I(V-I) WC TA= WC T A = is distributed uniformly along the cable winds, C will be If the weight L= H 2 + VH2I approximately equal to H/2. But, if the weight is not evenly distributed, the guy N wire may be subdivided into segments, and following formula is applied. S= WC i i=1 i 2 S H + (V-I) TA= 2 2 S H +H I(V-I) TA= HI 2 2 WC H1+tan + (V-I) WC TTAA== ( V- H t a n ) HI 2 where: 2 N S=N S= i=1 i=1 W iC i W iC i 2 H + (V-I) 2 2 = 1+tan 2 2 SH H + (V-I) Wi = Weight T Aof = the segment 2 i, in newtons (N). WC H I1+tan T A = distance 2from the guy wire anchor Ci = horizontal H tan ) 1+tan WC ( V- Indirect methods 1. The pulse method (see figures 7 and 8) Is applied a strong pull to the guy wire, near its anchor point, causing a wave or pulse that travels through the cable up and down. The first time that the pulse returns to the lower end of the guy wire, it starts a timer. Record the time it takes to return several times, and then the guy wire tension is calculated with the following formulas: ( V- H t a n ) WC There are two common techniques for indirectly measuring the initial tension of the guy wires: the pulse method or oscillations (vibration) and the method of the intersection of the tangent or warping (geometric). 2L 2 2 + V2 L= T AH=2 +H(V-I) 2 2 H W WH =IV 1+tan + L=T A =H 2 + TV 2 - Direct method (see figure 6) 2L anchored, towards the tower. This imaginary line intersects the tower at a given 2 WC 1+tan distance (intersection of the tangent) below the anchor point of the guy wire TA= 2 ( V) W LH N t a n distance on the tower.T This vertical between these two points is measured or M= 2 5.94P 2 estimated, and then the guy WC 1+tan wire tension is calculated applying the formula: T A = of the segment, in meters (m). center of gravity ( V- H t a n ) N = number of segments. point on the tower to the N S= W iC i 2 2 H +i=1(V-I) 2 1+tan = the If it is difficultHto point of intersection, it can be used the guy wire 2 determine 2 + (V-I) H 2 1+tan = according slope in its anchor point to the following formula: H TA= 2 WC 1+tan ( V- H t a n ) 2 H + (V-I) H 2 = 1+tan 2 TA= TA= HI 2 S H + (V-I) HI 9 2 N where: S= W iC i a = guy wire angle i=1 on its anchor point (see figure 7) l = V - H tan a and TA= 2 WC 1+tan (V-H ta n ) It can be substituted WC by S l = V - H tana 2 H + (V-I) H 2 = 1+tan EN 2 ón isi e lín v of Dynamometer Turnbuckle Turnstile DYNAMOMETER METHOD By tightening the turnbuckle, when the turnstile is loosened, the dynamometer holds all the tension. Fig. 7 PULSE METHOD OSCILLATION METHOD The pulse travels up and down the cable, N times within P seconds. El cable oscillates N times from a to b, within P seconds. Fig. 6 Method to measure the initial tension Fig. 8 Ratio between the guy wire tension on its anchor point and on its half 11. Technical information Below are examples of mounting towers at various heights, calculated with specific software for the design of towers. Note: For other mounting configurations (different heights, special conditions,... etc.), please request installation example. TOWER M180 10 Example of design for a tower 8,5 m height. R=2.0000 m 8.5 m Ref. 3010 R=2.0000 m PLAN R=2.0000 m 6.0 m LOADS INVOLVED IN THE DESIGN OF THE TOWER Yagi antenna (ref. 1495) NOTES TO DESIGN THE TOWER 5.3 m Tower designed to be installed in a wind loading area cathegory C (Exposure C), as per standard TIA-222-G; this is, flat, open country and grasslands. Tower designed for 180 Km/h wind speed, according to TIA-222-G standard. The tower is also sized to withstand winds of 90 Km/h with a sleeve of ice 10 mm in diameter. It is considered that, at higher altitudes more ice. The deviations are taken into account over 100 Km/h the wind speed. 4.6 m 4.5 m Tower structure Class II 3E Ref. 3032 HS LC Topographic category 1: The height of the elevated is 0.0 m. 95 =4. Guy wire: Ø3 (1×7+0); Rm > 7000 N; Initial tension: 10% Rm m 68 Configuration of sections: See references on the left margin. 10% IT= 3.8 m Tower mounted on a pivoting base, ref. 3048. Each guy wire is attached to an anchor ring ref. 3058. It takes into account the reactions shown in the figure. 3.0 m 2.3 m Max reaction base V: 5544 N H: 70 N Ref. 3037 5362 N 1.5 m 70 N 0.8 m 0 N-m Torsion 0 N-m Wind 90 Km/h - 10 mm Ice 5544 N 26 N 1233 N R=2.0000 m 2896 N 7N 314 0.0 m 0 N-m Torsion 0 N-m Reactions - Wind 180 Km/h 11 TIA-222-G - Service - 100 Kph Deflection (mm) Elevation (m) 0 8.5000 5 10 15 Maximum Values Tilt (deg) 20 25 0 EN Twist (deg) 0.5 -0.1 -0.05 0 0.05 0.1 8.5000 6.0000 6.0000 5.2500 5.2500 4.5000 4.5000 3.7500 3.7500 3.0000 3.0000 2.2500 2.2500 1.5000 1.5000 0.7500 0.7500 0.0000 0 0.0000 5 10 15 20 25 0 0.5 -0.1 -0.05 0 0.05 0.1 TOWER M180 12 Example of design for a tower 11,5 m height. R=3.0000 m 11.5 m Ref. 3010 R=3.0000 m PLAN 9.0 m R=3.0000 m LOADS INVOLVED IN THE DESIGN OF THE TOWER NOTAS PARA EL DISEÑO DE LA TORRE Yagi antenna (ref. 1495) Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G. NOTES TO DESIGN THE TOWER Torre diseñada para 180 km/h de viento básico de acuerdo con la norma TIA-222-G. La torre también diseñada km/h de viento básicoCcon un manguito Tower designed to está be installed in apara wind90 loading area cathegory (Exposure C), as per de hielo de 10,00 mm. el hielo standard TIA-222-G; thisSe is,considera flat, open que country andincrementa grasslands.con la altura. Las desviaciones basadas por encima de 100 to km/h de viento. Tower designed forestán 180 Km/h wind speed, according TIA-222-G standard. Estructura la torre II The tower isde also sized Clase to withstand winds of 90 Km/h with a sleeve of ice 10 mm in diameter. ItCategoría is considered that, at 1higher altitudes more topográfica con alto de cresta deice. 0,0The m deviations are taken into account over 100 Km/h wind speed. Cable Ø3the (1x7+0): Rm= 7000N. Pretensión= 10% Rm 8.3 m 7.6 m HS 3E 7.5 m Ref. 3032 8 LC= Tower structuretramos: Class II Ver refs. en margen izquierdo Configuración Topographic category 1: The height of elevated is 0.0 m. Torre montada en base basculante ref.the 3048 .113 9m 6.8 m IT= Guy wire: Ø3se (1×7+0); Rm la > 7000 N; Initial 10% Rm Cada cable ancla en zapata a una tension: argolla ref. 3058 Configuration of sections: See references on the left margin. Cálculos realizados con antena DAT HD Tower mounted on a pivoting base, ref. 3048. 10% 6.0 m Each guy wire is attached to an anchor ring ref. 3058. It takes into account the reactions shown in the figure. 5.3 m Ref. 3031 4.5 m Se tienen en cuenta todas las reacciones 4.4 m HS 3E =5 LC .29 m 48 3.8 m 1 IT= 0% 3.0 m Max reaction base V: 9573 N H: 73 N 2.3 m 9573 N Ref. 3037 1.5 m Moment 0 N-m 21 N Torsion 1 N-m Wind 90 Km/h - 10 mm Ice 9258 N 0.8 m 73 N 3603 N Torsion 1 N-m Reaction - Wind 180 Km/h N 1750 N R=3.0000 m 5 400 0.0 m Moment 0 N-m 13 TIA-222-G - Service - 100 Kph Maximun Values EN Deflection (mm) Elevation (m) 0 11.5000 Tilt (deg) 50 0 0.5 Twist (deg) 1 0 0.05 0.1 0.15 0.2 0.25 11.5000 9.0000 9.0000 8.2500 8.2500 7.5000 7.5000 6.7500 6.7500 6.0000 6.0000 5.2500 5.2500 4.5000 4.5000 3.7500 3.7500 3.0000 3.0000 2.2500 2.2500 1.5000 1.5000 0.7500 0.7500 0.0000 0 0.0000 50 0 0.5 1 0 0.05 0.1 0.15 0.2 0.25 TOWER M180 14 Example of design for a tower 14,5 m height. R=4.0000 m 14.5 m Ref. 3010 12.0 m R=4.0000 m R=4.0000 m PLAN 11.3 m 10.5 m 10.6 m L HS 4E Ref. 3032 LOADS INVOLVED IN THE DESIGN OF THE TOWER C=1 NOTAS PARA EL DISEÑO DE LA TORRE 39 m 1.27 9.8 m Yagi antenna (ref. 1495) IT= Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G. NOTES TO DESIGN THE TOWER Torre diseñada para 180 km/h de viento básico de acuerdo con la norma TIA-222-G. Tower designed toestá be installed in apara wind90 loading area cathegory (Exposure C), as per La torre también diseñada km/h de viento básicoCcon un manguito standard TIA-222-G; thisSe is,considera flat, open que country andincrementa grasslands.con la altura. de hielo de 10,00 mm. el hielo Tower designed for 180 Km/h wind speed, according TIA-222-G standard. Las desviaciones están basadas por encima de 100 to km/h de viento. 10% 9.0 m 8.3 m Ref. 3031 Estructura la torre II The tower isde also sizedClase to withstand winds of 90 Km/h with a sleeve of ice 10 mm in diameter. It is considered that, at1higher altitudes more Categoría topográfica con alto de cresta deice. 0,0The m deviations are taken into account over 100 Km/h the wind speed. Cable Ø4 (1x7+0): Rm= 10780N. Pretensión= 10% Rm Tower structuretramos: Class II Ver refs. en margen izquierdo Configuración Topographic category 1: basculante The height of elevated is 0.0 m. Torre montada en base ref.the 3048 7.5 m Guy Ø3se (1×7+0); Rm la > 7000 N; aInitial 10% Rm Cadawire: cable ancla en zapata una tension: argolla ref. 3058 Configuration of sections: See references on the left margin. Cálculos realizados con antena DAT HD Tower mounted on a pivoting base, ref. 3048. 6.8 m Each guy wire is attached to an anchor ring ref. 3058. It takes into account the reactions shown in the figure. 6.0 m Se tienen en cuenta todas las reacciones 5.4 m 5.3 m 4E HS m 49 4.5 m .60 =6 LC Ref. 3031 0% =1 IT 3.8 m 3.0 m Max reaction base V: 10481 N H: 111 N 10841 N 2.3 m Moment 0 N-m 51 N Ref. 3037 1.5 m Torsion 1 N-m Wind 90 Km/h - 10 mm Ice 9978 N 0.8 m 111 N 5073 N Torsion 0 N-m Reactions - Wind 180 Km/h 2510 N R=4.0000 m 0N 566 0.0 m Moment 0 N-m 15 TIA-222-G - Service - 100 Kph Maximum Values EN Deflection (mm) Elevation (m) 0 14.5000 Tilt (deg) 50 0 0.5 Twist (deg) 1 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 14.5000 12.0000 12.0000 11.2500 11.2500 10.5000 10.5000 9.7500 9.7500 9.0000 9.0000 8.2500 8.2500 7.5000 7.5000 6.7500 6.7500 6.0000 6.0000 5.2500 5.2500 4.5000 4.5000 3.7500 3.7500 3.0000 3.0000 2.2500 2.2500 1.5000 1.5000 0.7500 0.7500 0.0000 0 0.0000 50 0 0.5 1 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 TOWER M180 16 Example of design for a tower 17,5 m height. R=5.0000 m 17.5 m Ref. 3010 15.0 m 14.3 m R=5.0000 m 13.6 m 13.5 m 34 9 1 4 .4 LC= 12.8 m LOADS INVOLVED IN THE DESIGN OF THE TOWER m NOTAS PARA EL DISEÑO DE LA TORRE 10% IT= 12.0 m Yagi antenna (ref. 1495) Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G. NOTES TO DESIGN THE TOWER Torre diseñada para 180 km/h de viento básico de acuerdo con la norma TIA-222-G. Tower designed to está be installed in apara wind90 loading area cathegory (Exposure C), as per La torre también diseñada km/h de viento básicoC con un manguito standard TIA-222-G; thisSe is,considera flat, open country and incrementa grasslands. con la altura. de hielo de 10,00 mm. que el hielo Las desviaciones basadas por encima de 100 to km/h de viento. Tower designed forestán 180 Km/h wind speed, according TIA-222-G standard. 11.3 m Ref. 3031 10.5 m Estructura la torre II The tower isde also sized Clase to withstand winds of 90 Km/h with a sleeve of ice 10 mm in diameter. It is considered that, at 1higher altitudes more Categoría topográfica con alto de cresta deice. 0,0The m deviations are taken into account over 100 Km/h the wind speed. Cable Ø4 (1x7+0): Rm= 10780N. Pretensión= 10% Rm Tower structure Class II Configuración tramos: Ver refs. en margen izquierdo Topographic category 1: The height of the elevated is 0.0 m. Torre montada en base basculante ref. 3048 Guy wire: Ø3se (1×7+0); Rm la > 7000 N; Initial 10% Rm Cada cable ancla en zapata a una tension: argolla ref. 3058 Configuration of sections: See references on the left margin. Cálculos realizados con antena DAT HD Tower mounted on a pivoting base, ref. 3048. 9.8 m 9.1 m 9.0 m 4E L HS 1 C= 8.3 m 1 0.3 Each guy wire is attached to an anchor ring ref. 3058. 70 It takes into account the reactions shown in the figure. m 7.5 m 10 IT= Ref. 3031 R=5.0000 m HS 4E Ref. 3032 PLAN % Se tienen en cuenta todas las reacciones 6.8 m 6.0 m 5.3 m 4.4 m Ref. 3031 4.5 m 3.8 m 4 EH S Max reaction base V: 15504 N LC =6 H: 150 N .6 3.0 m 08 0 m IT =1 15504 0% Moment 0 N-m 68 N 2.3 m Ref. 3037 Torsion 0 N-m Wind 90 Km/h - 10 mm Ice 1.5 m 0.8 m 13845 N 150 N Moment 0 N-m 6762 N Torsion 0 N-m Reactions - Wind 180 Km/h 76 0.0 m N 75 N 3632 N R=5.0000 m 17 TIA-222-G - Service - 100 Km/h Maximun Values EN Deflection (mm) Elevation (m) 0 17.5000 Tilt (deg) 50 0 0.5 Twist (deg) 1 0 0.05 0.1 0.15 0.2 0.25 17.5000 15.0000 15.0000 14.2500 14.2500 13.5000 13.5000 12.7500 12.7500 12.0000 12.0000 11.2500 11.2500 10.5000 10.5000 9.7500 9.7500 9.0000 9.0000 8.2500 8.2500 7.5000 7.5000 6.7500 6.7500 6.0000 6.0000 5.2500 5.2500 4.5000 4.5000 3.7500 3.7500 3.0000 3.0000 2.2500 2.2500 1.5000 1.5000 0.7500 0.7500 0.0000 0 0.0000 50 0 0.5 1 0 0.05 0.1 0.15 0.2 0.25 TOWER M180 18 Example of design for a tower 20,5 m height. R=6.0000 m 20.5 m Ref. 3010 18.0 m 17.3 m 16.9 m 16.5 m R=6.0000 m PLAN .8 =17 15.8 m S LC 4 EH Ref. 3032 R=6.0000 m 7 92 m 0% IT=1 15.0 m LOADS INVOLVED IN THE DESIGN OF THE TOWER NOTAS PARA EL DISEÑO DE LA TORRE Yagi antenna (ref. 1495) 14.3 m Ref. 3031 Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G. NOTES TO DESIGN THE TOWER Torre diseñada para 180 km/h de viento básico de acuerdo con la norma TIA-222-G. Tower designed to be installed in a wind loading area cathegory C (Exposure C), as per La torre también está diseñada paracountry 90 km/hand de grasslands. viento básico con un manguito standard TIA-222-G; this is, flat, open de hielo de 10,00 mm. Se considera que el hielo incrementa con la altura. Tower designed for 180 Km/h wind speed, according to TIA-222-G standard. Las desviaciones están basadas por encima de 100 km/h de viento. 13.5 m 12.8 m The tower is sizedClase to withstand winds of 90 Km/h with a sleeve of ice 10 mm in diameter. Estructura dealso la torre II It is considered that, at higher altitudes more ice. The deviations are taken into account over Categoría topográfica 1 con alto de cresta de 0,0 m 100 Km/h the wind speed. Cable Ø4 (1x7+0): Rm= 10780N. Pretensión= 10% Rm Tower structure Class II Configuración tramos: Ver refs. en margen izquierdo Topographic category 1: The height of the elevated is 0.0 m. Torre montada en base basculante ref. 3048 Guy wire: Ø3 (1×7+0); Rm > 7000 N; Initial tension: 10% Rm Cada cable se ancla en la zapata a una argolla ref. 3058 Configuration of sections: See references on the left margin. Cálculos realizados con antena DAT HD Tower mounted on a pivoting base, ref. 3048. 12.0 m 11.3 m 10.9 m 1 C= 2.3 9.8 m L HS 10.5 m 4E Ref. 3031 76 Each guy wire is attached to an anchor ring ref. 3058. 0m It takes into account the reactions shown in the figure. IT= 10 9.0 m % Se tienen en cuenta todas las reacciones 8.3 m Ref. 3031 7.5 m 6.8 m 6.0 m 5.3 m Ref. 3031 4.5 m 3.8 m 3.0 m Ref. 3037 Max reaction base 4.9 m 4 V: 17819 N EH S LC H: 154 N =7 .6 59 4 m IT =1 17819 N 0% Moment 0 N-m 72 N 2.3 m Torsion 1 N-m Wind 90 Km/h - 10 mm Ice 1.5 m 15651 N 0.8 m Moment 0 N-m 7739 N Torsion 0 N-m Reactions - Wind 180 Km/h 87 0.0 m 154 N 85 N 4158 N R=6.0000 m 19 TIA-222-G - Service - 100 Kph Maximum Values EN Deflection (mm) Elevation (m) 0 20.5000 Tilt (g) 50 0 0.5 Twist (g) 1 0 0.05 0.1 0.15 0.2 20.5000 18.0000 18.0000 17.2500 17.2500 16.8750 16.8750 16.5000 16.5000 15.7500 15.7500 15.0000 15.0000 14.2500 14.2500 13.5000 13.5000 12.7500 12.7500 12.0000 12.0000 11.2500 11.2500 10.8750 10.8750 10.5000 10.5000 9.7500 9.7500 9.0000 9.0000 8.2500 8.2500 7.5000 7.5000 6.7500 6.7500 6.0000 6.0000 5.2500 5.2500 4.8750 4.8750 4.5000 4.5000 3.7500 3.7500 3.0000 3.0000 2.2500 2.2500 1.5000 1.5000 0.7500 0.7500 0.0000 0 0.0000 50 0 0.5 1 0 0.05 0.1 0.15 0.2 TOWER M180 20 Example of design for a tower 23,5 m height. R=9.0000 m 23.5 m Ref. 3010 21.0 m 20.3 m Ref. 3032 19.5 m 19.6 m 4E 64 .50 =21 LC 18.0 m HS 18.8 m R=9.0000 m R=9.0000 m PLAN m 10% IT= 17.3 m Ref. 3031 LOADS INVOLVED IN THE DESIGN OF THE TOWER 16.5 m NOTAS PARA EL DISEÑO DE LA TORRE Yagi antenna (ref. 1495) 15.8 m 15.0 m Torre diseñada paraTHE emplazamiento en zona expuesta (C) según la norma TIA-222-G. NOTES TO DESIGN TOWER Torre diseñada para 180 km/h de viento básico de acuerdo con la norma TIA-222-G. Tower designed to be installed in a wind loading area cathegory C (Exposure C), as per La torre también está diseñada paracountry 90 km/hand de viento básico con un manguito standard TIA-222-G; this is, flat, open grasslands. de hielo de 10,00 mm. Se considera que el hielo incrementa con la altura. Tower designed for 180 Km/h wind speed, according to TIA-222-G standard. Las desviaciones están basadas por encima de 100 km/h de viento. The tower is also sized to withstand winds of 90 Km/h with a sleeve of ice 10 mm in diameter. Estructura de la torre Clase II It is considered that, at higher altitudes more ice. The deviations are taken into account over Categoría 1 con alto de cresta de 0,0 m 100 Km/h topográfica the wind speed. Cable (1x7+0): Rm= Tower Ø4 structure Class II 10780N. Pretensión= 10% Rm Configuración tramos: Ver refs. en margen izquierdo Topographic category 1: The height of the elevated is 0.0 m. Torre montada en base basculante ref. 3048 Guy wire: Ø3 (1×7+0); R > 7000 N; Initial tension: 10% R Cada cable se ancla en mla zapata a una argolla ref. 3058 m Configuration of sections: See references on the left margin. Cálculos realizados con antena DAT HD Tower mounted on a pivoting base, ref. 3048. 14.9 m 4E 1 .38 17 C= 13.5 m 1m Ref. 3031 L HS 14.3 m % 10 IT= 12.8 m 12.0 m 11.3 m Each guy wire is attached to an anchor ring ref. 3058. It takes into account the reactions shown in the figure. 0 4. =1 LC 9.8 m 10.9 m S EH 10.5 m 4 Ref. 3031 4 57 Se tienen en cuenta todas las reacciones m IT 9.0 m 0% =1 8.3 m Ref. 3031 7.5 m 6.8 m 6.0 m 5.3 m Ref. 3031 4.5 m 3.8 m 3.0 m 2.3 m 5.3 m 4E HS L Max reaction base V: 22986 N H: 209 N C= 1 0.3 77 9 m IT= 22986 N 10 % Moment 0 N-m 127 N Torsion 12 N-m WInd 90 Km/h - 10 mm Ice 17033 N Ref. 3037 1.5 m 0.8 m Moment 0 N-m 8287 N Torsion 8 N-m Reactions - Wind 180 Km/h 6518 N R=9.0000 m 3N 54 10 0.0 m 209 N 21 TIA-222-G - Service - 100 Kph Maximum Values EN Deflection (mm) Elevation (m) 0 23.5000 Tilt (deg) 50 0 0.5 Twist (deg) 1 0 0.5 1 1.5 23.5000 21.0000 21.0000 20.2500 20.2500 19.5000 19.5000 18.7500 18.7500 18.0000 18.0000 17.2500 17.2500 16.5000 16.5000 15.7500 15.7500 15.0000 15.0000 14.2500 14.2500 13.5000 13.5000 12.7500 12.7500 12.0000 12.0000 11.2500 11.2500 10.8750 10.8750 10.5000 10.5000 9.7500 9.7500 9.0000 9.0000 8.2500 8.2500 7.5000 7.5000 6.7500 6.7500 6.0000 6.0000 5.2500 5.2500 4.5000 4.5000 3.7500 3.7500 3.0000 3.0000 2.2500 2.2500 1.5000 1.5000 0.7500 0.7500 0.0000 0 0.0000 50 0 0.5 1 0 0.5 1 1.5 TOWER M180 22 Example of design for a tower 26,5 m height. R=10.0000 m 26.5 m Ref. 3010 24.0 m 23.3 m 22.5 m 21.8 m 65 24. C= 21.0 m 22.6 m L HS 4E Ref. 3032 m 34 R=10.0000 m PLAN 10% IT = 20.3 m Ref. 3031 R=10.0000 m 19.5 m 18.8 m LOADS INVOLVED IN THE DESIGN OF THE TOWER 18.4 m Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G. NOTES DESIGNpara THE 180 TOWER TorreTO diseñada km/h de viento básico de acuerdo con la norma TIA-222-G. Tower designed to beestá installed in a wind cathegory C (Exposure C), as per La torre también diseñada paraloading 90 km/harea de viento básico con un manguito standard TIA-222-G; open country de hielo de 10,00 this mm.is, Seflat, considera que el and hielograsslands. incrementa con la altura. Lasdesigned desviaciones están basadas por encima de 100tokm/h de viento. Tower for 180 Km/h wind speed, according TIA-222-G standard. de la torretoClase II TheEstructura tower is also sized withstand winds of 90 Km/h with a sleeve of ice 10 mm in diameter. It isCategoría considered that, at higher more de ice.0,0 Themdeviations are taken into account over topográfica 1 conaltitudes alto de cresta 100Cable Km/hØ4 the(1x7+0): wind speed. Rm= 10780N. Pretensión= 10% Rm 20 C= 17.3 m NOTAS PARA EL DISEÑO DE LA TORRE Yagi antenna (ref. 1495) L HS 4E 18.0 m .87 59 16.5 m m Ref. 3031 10 IT= % 15.8 m 15.0 m Tower structure Class II Ver refs. en margen izquierdo Configuración tramos: Topographic category 1: The height of ref. the 3048 elevated is 0.0 m. Torre montada en base basculante GuyCada wire:cable Ø3 (1×7+0); > 7000 N; Initial Rm se anclaRmen la zapata a unatension: argolla 10% ref. 3058 14.3 m 13.9 m 13.5 m 4E HS Ref. 3031 = LC m 92 12.0 m Each guy wire is attached to an anchor ring ref. 3058. 0% =1 IT 11.3 m Ref. 3031 Configuration of sections: references Cálculos realizados conSee antena DAT HDon the left margin. Tower mounted on a pivoting base, ref. 3048. .04 17 12.8 m It takes into account the reactions shown in the figure. Se tienen en cuenta todas las reacciones 10.5 m 9.8 m 9.0 m 8.3 m Ref. 3031 9.4 m 4 EH S LC =1 3. 64 01 7.5 m 6.8 m 6.0 m m IT = 10 % Max reactions base V: 29123 N H: 158 N 5.3 m 4.5 m Ref. 3031 3.8 m 3.0 m 4.4 m 4E HS LC = 98 N Moment 0 N-m I T= 1 158 N Moment 0 N-m 10614 N Torsión 0 N-m Reactions - Wind 180 Km/h 13 8589 N R=10.0000 m 4N 65 0.0 m 509 m 21098 N 1.5 m 0.8 m 10. 8 Torsion 1 N-m 0% Wind 90 Km/h - 10 mm Ice 2.3 m Ref. 3037 29123 N 23 TIA-222-G - Service - 100 Kph Maximum Values EN Deflection (mm) Elevation (m) 0 26.5000 50 Tilt (deg) 100 0 0.5 Twist (deg) 1 0 0.5 26.5000 24.0000 24.0000 23.2500 23.2500 22.5000 22.5000 21.7500 21.7500 21.0000 21.0000 20.2500 20.2500 19.5000 19.5000 18.7500 18.7500 18.3750 18.3750 18.0000 18.0000 17.2500 17.2500 16.5000 16.5000 15.7500 15.7500 15.0000 15.0000 14.2500 14.2500 13.8750 13.8750 13.5000 13.5000 12.7500 12.7500 12.0000 12.0000 11.2500 11.2500 10.5000 10.5000 9.7500 9.3750 9.7500 9.3750 9.0000 9.0000 8.2500 8.2500 7.5000 7.5000 6.7500 6.7500 6.0000 6.0000 5.2500 5.2500 4.5000 4.5000 3.7500 3.7500 3.0000 3.0000 2.2500 2.2500 1.5000 1.5000 0.7500 0.7500 0.0000 0 0.0000 50 100 0 0.5 1 0 0.5 24 COMPOSITION Tower height (m) 8,5 Qty. Ref. ANCHORS 14,5 Qty. Ref. 17,5 Qty. Ref. 20,5 Qty. Ref. 23,5 Qty. Ref. 26,5 Qty. Ref. Pivoting base M180 1 3048 1 3048 1 3048 1 3048 1 3048 1 3048 1 3048 Lower section M180 1 3037 1 3037 1 3037 1 3037 1 3037 1 3037 1 3037 Middle section M180 - - 1 3031 2 3031 3 3031 4 3031 5 3031 6 3031 Upper section M180 1 3032 1 3032 1 3032 1 3032 1 3032 1 3032 1 3032 Guy wire anchor ring 3 3058 6 3058 6 3058 9 3058 9 3058 12 3058 15 3058 1 3010 1 3010 1 3010 1 3010 1 3010 1 3010 1 3010 Mást 3 m Height (en m) from base to points : A, B, C, D and E. A 4,6 4,4 5,4 4,4 4,9 5,3 4,4 B - 7,6 10,6 9,1 10,9 10,9 9,4 C - - - 13,6 16,9 14,9 13,9 D - - - - - 19,6 18,4 E - - - - - - 22,6 Distance (in m) between the center of tower base and guy R wire anchor point 2 3 4 5 6 9 10 N. of guy wires 1 2 2 3 3 4 5 3 (1x7+0) 3 (1x7+0) 4 (1x7+0) 4 (1x7+0) 4 (1x7+0) 4 (1x7+0) 4 (1x7+0) Diámeter Ø (mm) GUY WIRES 11,5 Qty. Ref. Cable’ breaking load Rm (N) Total guy wire length, in meters (m), (theoretical diagonal). Initial tension (N) 7000 7000 10780 10780 10780 10780 10780 a 5 5,3 6,7 6,7 8 10,4 10,9 b - 8,2 11,3 10,4 12,4 14,1 13,7 c - - - 14,5 17,9 17,4 17,1 d - - - - - 21,6 21 e - - - - - - 24,7 10% Rm 10% Rm 10% Rm 10% Rm 10% Rm 10% Rm 10% Rm 25 EN 26 Guarantee Televés S.A. offers a two year warranty from date of purchase to the EU countries. In countries not members of the EU, the legal guarantee is in effect at the time of sale. Keep proof of purchase to determine this date. During the warranty period, Televés S.A. is responsible for the failures caused by defects in material or workmanship. Televés S.A. meet the warranty by repairing or replacing defective equipment. Not included in the warranty is damage caused by improper use, wear, handling third party, catastrophes or any other cause beyond the control of Televés SA 27 EN 3048_001_ES
© Copyright 2024 ExpyDoc