Trestle-Towers180

M180
EN
GUY WIRED TOWERS
Mounting Instructions
w w w. t e l e v e s . c o m
WARNING
Trestle-tower installations should only be calculated and constructed by specialised
professionals as these fall under their responsibility; the mounting instructions provided
in this technical sheet are intended for information only, and the data given does not,
in any way, affect the responsibility of the manufacturer who only guarantees his own
products, provided that they are used under normal conditions.
It will be necessary to conduct a project to install the tower for each specific site,
which should take into account both the individual stresses and the recalculation of
foundations in accordance with the relevant geotechnical study.
The towers will be assembled by competent personnel and skilled in climbing, using
all means of protection required to safeguard the security in vertical works. Remenber
that international legislation requires for any structure higher than 3m a climber safety
device.
The use of Televes tower sections with non-Televes products may cause tower failure and
even personal injury.
Televes is not responsible of the misused of its products.
TOWER M180
4
1. Location
5. Tower mounting
The calculations shall be made for a generic site, in conditions where the wind
speed can reach 160 km / h, and considering an ice sleeve of 1 cm diameter for
a wind speed of 75 Km/h.
It has also been considered acceptable a ground resistance of 1.5 Kg/cm2
(normal compact ground).
Section by section mounting
Definitions:
Basic wind speed: The average speed of instantaneous speeds (peak gusts)
measured at intervals of time T = 3s, in open exposure (exposure C) at the
reference height Z = 10m which has a probability of being exceeded once
in 50 years.
Exposure C: Is an open terrain with scattered obstacles which height is
generally less than 9.1 m. This category includes flat, open country and
grasslands and shorelines in hurricane-prone areas.
2. Regulations applied
This is done by fixing the lower section to the base and placing it in the
upright position, ensuring that it is levelled. Next, are mounted the remaining
intermediate sections, that should have the corresponding guy wires already
fastened. The mounting process is carried out by climbing up the sections that
have already been erected and then lifting the next section that is to be fixed
with the adequate lifting equipment.
The climb up the trestle-tower should be carried out using the adequate safety
measures (safety belt, anchorages, etc.) and no more than two consecutive
sections should be erected without being secured by guy wires.
When two sections without guy wires have to be erected consecutively,
auxiliary guy wires should be used to secure the sections while they are being
mounted.
The tower should be continuously levelled via the adjustment of the guy wire
tension and the use of the appropriate levelling equipment.
6.- Reference description
3048
Reference
The legislation that has been the basis for the calculation is as follows:
- Standard NBE-EA-95 (Steel).
- Standard EHE-98 (Concrete).
- Norma TIA/EIA(1)-222-G.
- Norma NBE-MV-101.
- Eurocodes EN1990, EN1991, EN1993.
Description
Pivoting base for tower M180
Material
(1) Steel F626 (S 235) 8 mm thickness plate.
Re min. 235 N/mm2
Rn min. 340 N/mm2
(2) Steel - M24
Finishing
Galvanised 10 ± 1µm thickness + Bichromated + R.P.R.
(Reactive Protection Process)
Weight
5,6 Kg
3. The solution chosen
It has been considered standard steel structural tubes ST37-2, standard steel
rods S275JR, and steel plate S235.
For the design, was chosen equal size of all sections of the tower in order to
facilitate their manufacture and assembly on site.
4. Structural definition of the tower
The tower has a triangular base and is made up with standard sections of 3 m
each.
Each section consists of:
•
•
Description
Low section M180
(1) Steel ST 37-2 Ø 20 x 2 mm thickness.
Re min. 235 N/mm2 - Rn min. 360/510 N/mm2
Tubular legs made ​​of steel.
Solid bracing rods, horizontal and inclined steel.
The horizontal section of the tower defines an equilateral triangle with side of
16 cm, which is the distance between legs.
Horizontal bracing rods are spaced 30 cm.
The lower section of the tower is pivoted on the base (see par. 11. - Technical
Documentation).
The tower is guy wired with anchoring supports at 120 ° (see fig. 2).
3037
Reference
(2) Steel S 275 JR Ø 6 mm thickness.
Re min. 275 N/mm2 - Rn min. 410/560 N/mm2
Material
(3) Steel F626 (S 235) 10 mm thickness plate.
Re min. 235 N/mm2 - Rn min. 340 N/mm2
Weight
12,8 Kg
Finishment *
Galvanised 10 ± 1µm thickness + Bichromated + R.P.R.
(Reactive Protection Process)
Surface facing the
wind
0,27 m2 x 1,2 (coefficient.) = 0,273 m2
(1)
TIA = Telecommunications Industry Association
EIA = Electronic Industrials Association
5
Description
Material
- To avoid damaging the threaded joints between sections during handling, they are supplied with a plastic plugs.
3031
Reference
Middle section tower M180
- Once on erecting site and before mounting the tower, you must proceed to remove all plugs(ver fig. 1)
(1) Steel ST 37-2 Ø 20 x 2 mm thickness.
Re min. 235 N/mm2 - Rn min. 360/510 N/mm2
(2) Steel S 275 JR Ø 6 mm
Re min. 275 N/mm2 - Rn min. 410/560 N/mm2
Weight
11,2 Kg
Finishing
Galvanised 10 ± 1µm thickness + Bichromated + R.P.R.
(Reactive Protection Process)
Surface facing the
wind
0,236 m2 x 1,2 coef. = 0,283 m2
EN
3032
Reference
Description
Material
Upper section tower M180
(1) Steel ST 37-2 Ø 20 x 2 mm thickness.
Re min. 235 N/mm2 - Rn min. 360/510 N/mm2
(2) Steel S 275 JR Ø 6 mm thickness.
Re min. 275 N/mm2 - Rn min. 410/560 N/mm2
Weight
11,4 Kg
Finishing
Galvanised 10 ± 1µm thickness + Bichromated + R.P.R.
(Reactive Protection Process)
Surface facing the
wind
0,227 m2 x 1,2 coef. = 0,272 m2
Fig. 1
3058
Reference
Description
Guy wire anchoring ring.
Material
Steel F621 - 10 mm Ø.
Weight
0,6 Kg
TOWER M180
6
Foundation of the tower base
7. Foundations
The foundations (which are indicated just for guidance) are estimated for a soil
resistance of 1.5 Kg/cm2, although could be accepted a soil resistance of 1Kg/
cm2.
The concrete must have a minimum resistance of 15 N/mm2 (HA-25), and the
work control level is estimated as reduced.
Each concrete footing will bear steel reinforcement on top and bottom..
Depending on the specific site, geotechnical study and level of control, the
calculations should be reconsidered.
Plant view
Anchor
Point
Side view
Fig. 3
Center
fundationl
Foundation for guy wire anchoring ring
Anchor
Point
Anchor
Point
Anchor
Point
Guy Wire
direction
(*)
Plant view
(*)
Reinforcements
Side view
Arragement of Foundation
(*) It wil be used an anchoring ring per guy wire
Fig. 2
Foundation details
The ilustration is made just as an example.
Each facility will be subject to a customized assessment.
Fig. 4
7
FOUNDATIONS CHART (just for guidance)
Tower Height
(m)
26,5
23,5
20,5
17,5
14,5
11,5
8,5
Tower base foundation
Zapatas
Anchor ring foundation
“A” (cm)
“B” (cm)
“h” (cm)
“A” (cm)
“B” (cm)
“h” (cm)
50
50
33
150
150
100
Dimensions
-
Reinforcement
Dimensions
40
40
7 Ø14 C/20
27
130
-
Reinforcement
40
Dimensions
Reinforcement
40
40
40
27
120
Dimensions
40
40
27
110
Dimensions
40
Reinforcement
40
27
100
40
Reinforcement
40
-
80
110
73
100
67
5 Ø12 C/20
27
90
-
Dimensions
120
6 Ø12 C/20
-
Reinforcement
EN
6 Ø12 C/20
-
Reinforcement
87
6 Ø12 C/20
-
Dimensions
130
90
60
5 Ø12 C/20
27
80
80
53
4 Ø12 C/20
8. Stucture (Sections & Guy wires)
(*)
The guy wire clamps must be readjusted later
after the first wire pull.
The body of the guy wire clamp must be mounted
over the live end of the cable and all of them in
the same position, as shown in the figure.
(*)
Fig. 5
TOWER M180
8
9. Important advice
In order to preserve the characteristics of the tower at a given site, it will require
periodic inspection of the tension of the guy wires, and check tightness of bolts;
for example, it is advisable do this between October 1 and January 1 of each
year.
It is also recommended to check the whole structure after strong wind or ice
storms or other extreme conditions.
Also, we recommend regular checking of the structure in areas of high
concentration of salinity (shoreline areas) and areas with corrosive
environments.
Will be discarded sections in which is appreciated deformations during
transportation, assembly, dismantling or useful life of the tower.
It should be annual checks and repairs, if any, of all incidents reported.
5.94P 2
WLN2
TM=
5.94P 2
WV
TA=
TM -
where:
TA TM
W
L
TA=
2
2
WH
+
2L
2
2L
2
WV
TM -
WH
+
2L
2L
= Guy wire tension at the anchor, in newtons (N).
= Guy wire tension at the middle of its length, in newtons (N).
= Total weight of the guy wire, including insulation, .. etc, in newtons(N).
2
2
+V
=L=
GuyHwire
length, in meters (m).
L= H 2 + V 2
H = Horizontal distance from the cable clamp on the tower and the guy wire
anchor, in meters 2(m). 2
WC H + (V-I)
=
V = VerticalT Adistance
from
the cable clamp on the tower and the guy wire
2
W L NH
I
T
=
M
anchor, in meters
2
5.94P(m).
2
2
N = NumberT of= complete
oscillations
or pulses measured in a period of P
WC H + (V-I)
HI
seconds. A
P = Period of time measured
for N pulses or oscillations.
2 in seconds,
2
- Misalignments and deformations.
- Check welds.
- Check painting.
- Check cable joints.
- Check cables.
- Cable tension (measurement *).
*
The
cable
tension
measure
is
subject
variations
depending
on
the
wind
and
Do not measure or adjust cables in high wind conditions.
WLN2
TM=
to
slight
temperature.
TA= T 2 - W V 2 + W H
S HM + (V-I)
2L
2L
T
A=
Instead of creating
a pulse traveling up and down the cable winds, you can get
HI
the same result byW
making
the cable winds swing freely from side to side while
LN2
T M = S H22 +2 (V-I) 2
measuring the
L Nto make N complete oscillations. The above formulas can
T Atime
=W 5.94P
T =
H
I
2method.
also be usedMwith
this
5.94P
N
S=
W iC i
i=1
2
2
WV
WH
= intersection
T M - 2 + of 2the tangent or warping (see figure 10)
N
2. Method ofT Athe
2
2 V2L
W H2L
H +- W
VWi C
=imaginary
S=T
+
i
AL=
It is drawn Tan
tangent
line from the point where the guy wire end is
M
i=1
10. How to measure guy wire tensions
(Legislation)
TA=
This section provides guidelines to measure “in situ” the tension of the guy
wires. There are two main methods: the direct and the indirect method.
A dynamometer (load cell) with an instrument for length adjustment, as a
tensor, which is added to the guy wire system, and being attached to the
turnstile just above it, and to the anchor point just below the turnstile.
Next, the turnbuckle is tensioned until the original turnstile begins to loosen.
At this time, the dynamometer supports the entire load of the guy wire up the
anchor point. Then, the tension of the guy wire can be measured directly on the
dynamometer.
You can use this method to set the proper tension, adjusting the turnbuckle
until you can read the proper tension on the dynamometer.
The control points are marked, one above the attachment point on the guy
wire, and another on anchor point on the tower. This way, the control’ length
can be measured. Then, remove the dynamometer and the turnbuckle; and
the original turnstile is adjusted to maintain the previously measured length
control.
2
H + (V-I)
2
H
M
2L
2
H + (V-I)
2
2L
2
2
where:
= 1+tan
H
C = Horizontal length measured from the anchor point of the guy wire on the
tower to its center
of gravity
W, in meters (m).
2
2
S H + (V-I)
T A = of the tangent,
I = Intersection
2 in meters (m).
HI 2
H + (V-I)
2
2
H +H I(V-I)
WC
TA=
WC
T A = is distributed uniformly along the cable winds, C will be
If the weight
L= H 2 + VH2I
approximately
equal to H/2. But, if the weight is not evenly distributed, the guy
N
wire may be subdivided
into segments, and following formula is applied.
S=
WC
i
i=1
i
2
S H + (V-I)
TA=
2
2
S H +H I(V-I)
TA=
HI
2
2
WC H1+tan
+ (V-I)
WC
TTAA== ( V- H t a n )
HI
2
where:
2
N
S=N
S=
i=1
i=1
W iC i
W iC i
2
H + (V-I)
2
2
= 1+tan
2
2
SH H + (V-I)
Wi = Weight
T Aof
= the segment
2 i, in newtons (N).
WC H I1+tan
T A = distance 2from the guy wire anchor
Ci = horizontal
H tan )
1+tan
WC ( V-
Indirect methods
1. The pulse method (see figures 7 and 8)
Is applied a strong pull to the guy wire, near its anchor point, causing a wave or
pulse that travels through the cable up and down. The first time that the pulse
returns to the lower end of the guy wire, it starts a timer. Record the time it
takes to return several times, and then the guy wire tension is calculated with
the following formulas:
( V- H t a n )
WC
There are two common techniques for indirectly measuring the initial tension
of the guy wires: the pulse method or oscillations (vibration) and the method of
the intersection of the tangent or warping (geometric).
2L
2
2
+ V2
L=
T AH=2 +H(V-I)
2
2
H
W
WH
=IV 1+tan
+
L=T A =H 2 + TV 2 -
Direct method (see figure 6)
2L
anchored, towards the tower.
This imaginary line intersects the tower at a given
2
WC 1+tan
distance (intersection
of the tangent) below the anchor point of the guy wire
TA=
2
( V)
W
LH
N t a n distance
on the tower.T This
vertical
between these two points is measured or
M=
2
5.94P
2
estimated, and then
the
guy
WC 1+tan wire tension is calculated applying the formula:
T A = of the segment, in meters (m).
center of gravity
( V- H t a n )
N = number of segments.
point on the tower to the
N
S=
W iC i
2
2
H +i=1(V-I)
2
1+tan
= the
If it is difficultHto
point of intersection, it can be used the guy wire
2 determine
2
+ (V-I)
H
2
1+tan
= according
slope in its anchor point
to the following formula:
H
TA=
2
WC 1+tan
( V- H t a n )
2
H + (V-I)
H
2
=
1+tan
2
TA=
TA=
HI
2
S H + (V-I)
HI
9
2
N
where:
S=
W iC i
a = guy wire angle
i=1 on its anchor point (see figure 7)
l = V - H tan a
and
TA=
2
WC 1+tan
(V-H ta n )
It can be substituted WC by S l = V - H tana
2
H + (V-I)
H
2
=
1+tan
EN
2
ón
isi
e
lín
v
of
Dynamometer
Turnbuckle
Turnstile
DYNAMOMETER METHOD
By tightening the turnbuckle,
when the turnstile is
loosened, the dynamometer
holds all the tension.
Fig. 7
PULSE METHOD
OSCILLATION METHOD
The pulse travels up and
down the cable, N times
within P seconds.
El cable oscillates N times
from a to b, within P
seconds.
Fig. 6
Method to measure the initial tension
Fig. 8
Ratio between the guy wire tension on its anchor point and on its half
11. Technical information
Below are examples of mounting towers at various heights, calculated with specific software for the design of towers.
Note: For other mounting configurations (different heights, special conditions,... etc.), please request installation example.
TOWER M180
10
Example of design for a tower 8,5 m height.
R=2.0000 m
8.5 m
Ref. 3010
R=2.0000 m
PLAN
R=2.0000 m
6.0 m
LOADS INVOLVED IN THE DESIGN OF THE TOWER
Yagi antenna (ref. 1495)
NOTES TO DESIGN THE TOWER
5.3 m
Tower designed to be installed in a wind loading area cathegory C (Exposure C), as per
standard TIA-222-G; this is, flat, open country and grasslands.
Tower designed for 180 Km/h wind speed, according to TIA-222-G standard.
The tower is also sized to withstand winds of 90 Km/h with a sleeve of ice 10 mm in diameter.
It is considered that, at higher altitudes more ice. The deviations are taken into account over
100 Km/h the wind speed.
4.6 m
4.5 m
Tower structure Class II
3E
Ref. 3032
HS
LC
Topographic category 1: The height of the elevated is 0.0 m.
95
=4.
Guy wire: Ø3 (1×7+0); Rm > 7000 N; Initial tension: 10% Rm
m
68
Configuration of sections: See references on the left margin.
10%
IT=
3.8 m
Tower mounted on a pivoting base, ref. 3048.
Each guy wire is attached to an anchor ring ref. 3058.
It takes into account the reactions shown in the figure.
3.0 m
2.3 m
Max reaction base
V: 5544 N
H: 70 N
Ref. 3037
5362 N
1.5 m
70 N
0.8 m
0 N-m
Torsion 0 N-m
Wind 90 Km/h - 10 mm Ice
5544 N
26 N
1233 N
R=2.0000 m
2896 N
7N
314
0.0 m
0 N-m
Torsion 0 N-m
Reactions - Wind 180 Km/h
11
TIA-222-G - Service - 100 Kph
Deflection (mm)
Elevation (m)
0
8.5000
5
10
15
Maximum Values
Tilt (deg)
20
25
0
EN
Twist (deg)
0.5
-0.1
-0.05
0
0.05
0.1
8.5000
6.0000
6.0000
5.2500
5.2500
4.5000
4.5000
3.7500
3.7500
3.0000
3.0000
2.2500
2.2500
1.5000
1.5000
0.7500
0.7500
0.0000
0
0.0000
5
10
15
20
25
0
0.5
-0.1
-0.05
0
0.05
0.1
TOWER M180
12
Example of design for a tower 11,5 m height.
R=3.0000 m
11.5 m
Ref. 3010
R=3.0000 m
PLAN
9.0 m
R=3.0000 m
LOADS INVOLVED IN THE DESIGN OF THE TOWER
NOTAS PARA EL DISEÑO DE LA TORRE
Yagi antenna (ref. 1495)
Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G.
NOTES
TO DESIGN
THE
TOWER
Torre diseñada
para
180
km/h de viento básico de acuerdo con la norma TIA-222-G.
La torre
también
diseñada
km/h de
viento
básicoCcon
un manguito
Tower
designed
to está
be installed
in apara
wind90
loading
area
cathegory
(Exposure
C), as per
de hielo de
10,00 mm.
el hielo
standard
TIA-222-G;
thisSe
is,considera
flat, open que
country
andincrementa
grasslands.con la altura.
Las desviaciones
basadas
por
encima
de 100 to
km/h
de viento.
Tower
designed forestán
180 Km/h
wind
speed,
according
TIA-222-G
standard.
Estructura
la torre
II
The
tower isde
also
sized Clase
to withstand
winds of 90 Km/h with a sleeve of ice 10 mm in diameter.
ItCategoría
is considered
that, at 1higher
altitudes
more
topográfica
con alto
de cresta
deice.
0,0The
m deviations are taken into account over
100
Km/h
wind speed.
Cable
Ø3the
(1x7+0):
Rm= 7000N. Pretensión= 10% Rm
8.3 m
7.6 m
HS
3E
7.5 m
Ref. 3032
8
LC=
Tower
structuretramos:
Class II Ver refs. en margen izquierdo
Configuración
Topographic
category
1: The
height of
elevated is 0.0 m.
Torre montada
en base
basculante
ref.the
3048
.113
9m
6.8 m
IT=
Guy
wire:
Ø3se
(1×7+0);
Rm la
> 7000
N; Initial
10%
Rm
Cada
cable
ancla en
zapata
a una tension:
argolla ref.
3058
Configuration of sections: See references on the left margin.
Cálculos realizados con antena DAT HD
Tower mounted on a pivoting base, ref. 3048.
10%
6.0 m
Each guy wire is attached to an anchor ring ref. 3058.
It takes into account the reactions shown in the figure.
5.3 m
Ref. 3031
4.5 m
Se tienen en cuenta todas las reacciones
4.4 m
HS
3E
=5
LC
.29
m
48
3.8 m
1
IT=
0%
3.0 m
Max reaction base
V: 9573 N
H: 73 N
2.3 m
9573 N
Ref. 3037
1.5 m
Moment
0 N-m
21 N
Torsion 1 N-m
Wind 90 Km/h - 10 mm Ice
9258 N
0.8 m
73 N
3603 N
Torsion 1 N-m
Reaction - Wind 180 Km/h
N
1750 N
R=3.0000 m
5
400
0.0 m
Moment
0 N-m
13
TIA-222-G - Service - 100 Kph
Maximun Values
EN
Deflection (mm)
Elevation (m)
0
11.5000
Tilt (deg)
50
0
0.5
Twist (deg)
1
0
0.05
0.1
0.15
0.2
0.25
11.5000
9.0000
9.0000
8.2500
8.2500
7.5000
7.5000
6.7500
6.7500
6.0000
6.0000
5.2500
5.2500
4.5000
4.5000
3.7500
3.7500
3.0000
3.0000
2.2500
2.2500
1.5000
1.5000
0.7500
0.7500
0.0000
0
0.0000
50
0
0.5
1
0
0.05
0.1
0.15
0.2
0.25
TOWER M180
14
Example of design for a tower 14,5 m height.
R=4.0000 m
14.5 m
Ref. 3010
12.0 m
R=4.0000 m
R=4.0000 m
PLAN
11.3 m
10.5 m
10.6 m
L
HS
4E
Ref. 3032
LOADS INVOLVED IN THE DESIGN OF THE TOWER
C=1
NOTAS PARA EL DISEÑO DE LA TORRE
39 m
1.27
9.8 m
Yagi antenna (ref. 1495)
IT=
Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G.
NOTES
TO DESIGN
THE
TOWER
Torre diseñada
para
180
km/h de viento básico de acuerdo con la norma TIA-222-G.
Tower
designed
toestá
be installed
in apara
wind90
loading
area
cathegory
(Exposure
C), as per
La torre
también
diseñada
km/h de
viento
básicoCcon
un manguito
standard
TIA-222-G;
thisSe
is,considera
flat, open que
country
andincrementa
grasslands.con la altura.
de hielo de
10,00 mm.
el hielo
Tower
designed for
180 Km/h
wind
speed,
according
TIA-222-G
standard.
Las desviaciones
están
basadas
por
encima
de 100 to
km/h
de viento.
10%
9.0 m
8.3 m
Ref. 3031
Estructura
la torre
II
The
tower isde
also
sizedClase
to withstand
winds of 90 Km/h with a sleeve of ice 10 mm in diameter.
It
is considered
that, at1higher
altitudes
more
Categoría
topográfica
con alto
de cresta
deice.
0,0The
m deviations are taken into account over
100 Km/h the wind speed.
Cable Ø4 (1x7+0): Rm= 10780N. Pretensión= 10% Rm
Tower
structuretramos:
Class II Ver refs. en margen izquierdo
Configuración
Topographic
category
1: basculante
The height of
elevated is 0.0 m.
Torre montada
en base
ref.the
3048
7.5 m
Guy
Ø3se
(1×7+0);
Rm la
> 7000
N; aInitial
10%
Rm
Cadawire:
cable
ancla en
zapata
una tension:
argolla ref.
3058
Configuration of sections: See references on the left margin.
Cálculos realizados con antena DAT HD
Tower mounted on a pivoting base, ref. 3048.
6.8 m
Each guy wire is attached to an anchor ring ref. 3058.
It takes into account the reactions shown in the figure.
6.0 m
Se tienen en cuenta todas las reacciones
5.4 m
5.3 m
4E
HS
m
49
4.5 m
.60
=6
LC
Ref. 3031
0%
=1
IT
3.8 m
3.0 m
Max reaction base
V: 10481 N
H: 111 N
10841 N
2.3 m
Moment
0 N-m
51 N
Ref. 3037
1.5 m
Torsion 1 N-m
Wind 90 Km/h - 10 mm Ice
9978 N
0.8 m
111 N
5073 N
Torsion 0 N-m
Reactions - Wind 180 Km/h
2510 N
R=4.0000 m
0N
566
0.0 m
Moment
0 N-m
15
TIA-222-G - Service - 100 Kph
Maximum Values
EN
Deflection (mm)
Elevation (m)
0
14.5000
Tilt (deg)
50
0
0.5
Twist (deg)
1
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
14.5000
12.0000
12.0000
11.2500
11.2500
10.5000
10.5000
9.7500
9.7500
9.0000
9.0000
8.2500
8.2500
7.5000
7.5000
6.7500
6.7500
6.0000
6.0000
5.2500
5.2500
4.5000
4.5000
3.7500
3.7500
3.0000
3.0000
2.2500
2.2500
1.5000
1.5000
0.7500
0.7500
0.0000
0
0.0000
50
0
0.5
1
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
TOWER M180
16
Example of design for a tower 17,5 m height.
R=5.0000 m
17.5 m
Ref. 3010
15.0 m
14.3 m
R=5.0000 m
13.6 m
13.5 m
34 9
1 4 .4
LC=
12.8 m
LOADS INVOLVED IN THE DESIGN OF THE TOWER
m
NOTAS PARA EL DISEÑO DE LA TORRE
10%
IT=
12.0 m
Yagi antenna (ref. 1495)
Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G.
NOTES
TO DESIGN
THE
TOWER
Torre diseñada
para
180
km/h de viento básico de acuerdo con la norma TIA-222-G.
Tower
designed
to está
be installed
in apara
wind90
loading
area
cathegory
(Exposure
C), as per
La torre
también
diseñada
km/h de
viento
básicoC con
un manguito
standard
TIA-222-G;
thisSe
is,considera
flat, open country
and incrementa
grasslands. con la altura.
de hielo de
10,00 mm.
que el hielo
Las desviaciones
basadas
por
encima
de 100 to
km/h
de viento.
Tower
designed forestán
180 Km/h
wind
speed,
according
TIA-222-G
standard.
11.3 m
Ref. 3031
10.5 m
Estructura
la torre
II
The
tower isde
also
sized Clase
to withstand
winds of 90 Km/h with a sleeve of ice 10 mm in diameter.
It
is considered
that, at 1higher
altitudes
more
Categoría
topográfica
con alto
de cresta
deice.
0,0The
m deviations are taken into account over
100 Km/h the wind speed.
Cable Ø4 (1x7+0): Rm= 10780N. Pretensión= 10% Rm
Tower structure Class II
Configuración tramos: Ver refs. en margen izquierdo
Topographic
category
1: The
height of
the
elevated is 0.0 m.
Torre montada
en base
basculante
ref.
3048
Guy
wire:
Ø3se
(1×7+0);
Rm la
> 7000
N; Initial
10%
Rm
Cada
cable
ancla en
zapata
a una tension:
argolla ref.
3058
Configuration of sections: See references on the left margin.
Cálculos realizados con antena DAT HD
Tower mounted on a pivoting base, ref. 3048.
9.8 m
9.1 m
9.0 m
4E
L
HS
1
C=
8.3 m
1
0.3
Each guy wire is attached to an anchor ring ref. 3058.
70
It takes into account the reactions shown in the figure.
m
7.5 m
10
IT=
Ref. 3031
R=5.0000 m
HS
4E
Ref. 3032
PLAN
%
Se tienen en cuenta todas las reacciones
6.8 m
6.0 m
5.3 m
4.4 m
Ref. 3031
4.5 m
3.8 m
4
EH
S
Max reaction base
V: 15504 N
LC
=6
H: 150 N
.6
3.0 m
08
0
m
IT
=1 15504
0%
Moment
0 N-m
68 N
2.3 m
Ref. 3037
Torsion 0 N-m
Wind 90 Km/h - 10 mm Ice
1.5 m
0.8 m
13845 N
150 N
Moment
0 N-m
6762 N
Torsion 0 N-m
Reactions - Wind 180 Km/h
76
0.0 m
N
75
N
3632 N
R=5.0000 m
17
TIA-222-G - Service - 100 Km/h
Maximun Values
EN
Deflection (mm)
Elevation (m)
0
17.5000
Tilt (deg)
50
0
0.5
Twist (deg)
1
0
0.05
0.1
0.15
0.2
0.25
17.5000
15.0000
15.0000
14.2500
14.2500
13.5000
13.5000
12.7500
12.7500
12.0000
12.0000
11.2500
11.2500
10.5000
10.5000
9.7500
9.7500
9.0000
9.0000
8.2500
8.2500
7.5000
7.5000
6.7500
6.7500
6.0000
6.0000
5.2500
5.2500
4.5000
4.5000
3.7500
3.7500
3.0000
3.0000
2.2500
2.2500
1.5000
1.5000
0.7500
0.7500
0.0000
0
0.0000
50
0
0.5
1
0
0.05
0.1
0.15
0.2
0.25
TOWER M180
18
Example of design for a tower 20,5 m height.
R=6.0000 m
20.5 m
Ref. 3010
18.0 m
17.3 m
16.9 m
16.5 m
R=6.0000 m
PLAN
.8
=17
15.8 m
S LC
4 EH
Ref. 3032
R=6.0000 m
7 92
m
0%
IT=1
15.0 m
LOADS INVOLVED IN THE DESIGN OF THE TOWER
NOTAS PARA EL DISEÑO DE LA TORRE
Yagi antenna (ref. 1495)
14.3 m
Ref. 3031
Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G.
NOTES TO DESIGN THE TOWER
Torre diseñada para 180 km/h de viento básico de acuerdo con la norma TIA-222-G.
Tower designed to be installed in a wind loading area cathegory C (Exposure C), as per
La torre también
está
diseñada
paracountry
90 km/hand
de grasslands.
viento básico con un manguito
standard
TIA-222-G;
this
is, flat, open
de hielo de 10,00 mm. Se considera que el hielo incrementa con la altura.
Tower designed for 180 Km/h wind speed, according to TIA-222-G standard.
Las desviaciones están basadas por encima de 100 km/h de viento.
13.5 m
12.8 m
The
tower is
sizedClase
to withstand
winds of 90 Km/h with a sleeve of ice 10 mm in diameter.
Estructura
dealso
la torre
II
It is considered that, at higher altitudes more ice. The deviations are taken into account over
Categoría
topográfica
1
con
alto
de
cresta
de 0,0 m
100 Km/h the wind speed.
Cable Ø4 (1x7+0): Rm= 10780N. Pretensión= 10% Rm
Tower structure Class II
Configuración tramos: Ver refs. en margen izquierdo
Topographic category 1: The height of the elevated is 0.0 m.
Torre montada en base basculante ref. 3048
Guy wire: Ø3 (1×7+0); Rm > 7000 N; Initial tension: 10% Rm
Cada cable se ancla en la zapata a una argolla ref. 3058
Configuration of sections: See references on the left margin.
Cálculos realizados con antena DAT HD
Tower mounted on a pivoting base, ref. 3048.
12.0 m
11.3 m
10.9 m
1
C=
2.3
9.8 m
L
HS
10.5 m
4E
Ref. 3031
76
Each guy wire is attached to an anchor ring ref. 3058.
0m
It takes into account the reactions shown in the figure.
IT=
10
9.0 m
%
Se tienen en cuenta todas las reacciones
8.3 m
Ref. 3031
7.5 m
6.8 m
6.0 m
5.3 m
Ref. 3031
4.5 m
3.8 m
3.0 m
Ref. 3037
Max reaction base
4.9 m
4
V: 17819 N
EH
S
LC
H: 154 N
=7
.6
59
4
m
IT
=1 17819 N
0%
Moment
0 N-m
72 N
2.3 m
Torsion 1 N-m
Wind 90 Km/h - 10 mm Ice
1.5 m
15651 N
0.8 m
Moment
0 N-m
7739 N
Torsion 0 N-m
Reactions - Wind 180 Km/h
87
0.0 m
154 N
85
N
4158 N
R=6.0000 m
19
TIA-222-G - Service - 100 Kph
Maximum Values
EN
Deflection (mm)
Elevation (m)
0
20.5000
Tilt (g)
50
0
0.5
Twist (g)
1
0
0.05
0.1
0.15
0.2
20.5000
18.0000
18.0000
17.2500
17.2500
16.8750
16.8750
16.5000
16.5000
15.7500
15.7500
15.0000
15.0000
14.2500
14.2500
13.5000
13.5000
12.7500
12.7500
12.0000
12.0000
11.2500
11.2500
10.8750
10.8750
10.5000
10.5000
9.7500
9.7500
9.0000
9.0000
8.2500
8.2500
7.5000
7.5000
6.7500
6.7500
6.0000
6.0000
5.2500
5.2500
4.8750
4.8750
4.5000
4.5000
3.7500
3.7500
3.0000
3.0000
2.2500
2.2500
1.5000
1.5000
0.7500
0.7500
0.0000
0
0.0000
50
0
0.5
1
0
0.05
0.1
0.15
0.2
TOWER M180
20
Example of design for a tower 23,5 m height.
R=9.0000 m
23.5 m
Ref. 3010
21.0 m
20.3 m
Ref. 3032
19.5 m
19.6 m
4E
64
.50
=21
LC
18.0 m
HS
18.8 m
R=9.0000 m
R=9.0000 m
PLAN
m
10%
IT=
17.3 m
Ref. 3031
LOADS INVOLVED IN THE DESIGN OF THE TOWER
16.5 m
NOTAS PARA EL DISEÑO DE LA TORRE
Yagi antenna (ref. 1495)
15.8 m
15.0 m
Torre
diseñada
paraTHE
emplazamiento
en zona expuesta (C) según la norma TIA-222-G.
NOTES
TO DESIGN
TOWER
Torre diseñada para 180 km/h de viento básico de acuerdo con la norma TIA-222-G.
Tower designed to be installed in a wind loading area cathegory C (Exposure C), as per
La
torre también
está
diseñada
paracountry
90 km/hand
de viento
básico con un manguito
standard
TIA-222-G;
this
is, flat, open
grasslands.
de hielo de 10,00 mm. Se considera que el hielo incrementa con la altura.
Tower designed for 180 Km/h wind speed, according to TIA-222-G standard.
Las desviaciones están basadas por encima de 100 km/h de viento.
The tower is also sized to withstand winds of 90 Km/h with a sleeve of ice 10 mm in diameter.
Estructura de la torre Clase II
It is considered that, at higher altitudes more ice. The deviations are taken into account over
Categoría
1 con alto de cresta de 0,0 m
100 Km/h topográfica
the wind speed.
Cable
(1x7+0):
Rm=
Tower Ø4
structure
Class
II 10780N. Pretensión= 10% Rm
Configuración tramos: Ver refs. en margen izquierdo
Topographic category 1: The height of the elevated is 0.0 m.
Torre montada en base basculante ref. 3048
Guy wire: Ø3 (1×7+0); R > 7000 N; Initial tension: 10% R
Cada cable se ancla en mla zapata a una argolla ref. 3058 m
Configuration of sections: See references on the left margin.
Cálculos realizados con antena DAT HD
Tower mounted on a pivoting base, ref. 3048.
14.9 m
4E
1
.38
17
C=
13.5 m
1m
Ref. 3031
L
HS
14.3 m
%
10
IT=
12.8 m
12.0 m
11.3 m
Each guy wire is attached to an anchor ring ref. 3058.
It takes into account the reactions shown in the figure.
0
4.
=1
LC
9.8 m
10.9 m
S
EH
10.5 m
4
Ref. 3031
4
57
Se tienen en cuenta todas las reacciones
m
IT
9.0 m
0%
=1
8.3 m
Ref. 3031
7.5 m
6.8 m
6.0 m
5.3 m
Ref. 3031
4.5 m
3.8 m
3.0 m
2.3 m
5.3 m
4E
HS
L
Max reaction base
V: 22986 N
H: 209 N
C=
1
0.3
77
9
m
IT=
22986 N
10
%
Moment
0 N-m
127 N
Torsion 12 N-m
WInd 90 Km/h - 10 mm Ice
17033 N
Ref. 3037
1.5 m
0.8 m
Moment
0 N-m
8287 N
Torsion 8 N-m
Reactions - Wind 180 Km/h
6518 N
R=9.0000 m
3N
54
10
0.0 m
209 N
21
TIA-222-G - Service - 100 Kph
Maximum Values
EN
Deflection (mm)
Elevation (m)
0
23.5000
Tilt (deg)
50
0
0.5
Twist (deg)
1
0
0.5
1
1.5
23.5000
21.0000
21.0000
20.2500
20.2500
19.5000
19.5000
18.7500
18.7500
18.0000
18.0000
17.2500
17.2500
16.5000
16.5000
15.7500
15.7500
15.0000
15.0000
14.2500
14.2500
13.5000
13.5000
12.7500
12.7500
12.0000
12.0000
11.2500
11.2500
10.8750
10.8750
10.5000
10.5000
9.7500
9.7500
9.0000
9.0000
8.2500
8.2500
7.5000
7.5000
6.7500
6.7500
6.0000
6.0000
5.2500
5.2500
4.5000
4.5000
3.7500
3.7500
3.0000
3.0000
2.2500
2.2500
1.5000
1.5000
0.7500
0.7500
0.0000
0
0.0000
50
0
0.5
1
0
0.5
1
1.5
TOWER M180
22
Example of design for a tower 26,5 m height.
R=10.0000 m
26.5 m
Ref. 3010
24.0 m
23.3 m
22.5 m
21.8 m
65
24.
C=
21.0 m
22.6 m
L
HS
4E
Ref. 3032
m
34
R=10.0000 m
PLAN
10%
IT =
20.3 m
Ref. 3031
R=10.0000 m
19.5 m
18.8 m
LOADS INVOLVED IN THE DESIGN OF THE TOWER
18.4 m
Torre diseñada para emplazamiento en zona expuesta (C) según la norma TIA-222-G.
NOTES
DESIGNpara
THE 180
TOWER
TorreTO
diseñada
km/h de viento básico de acuerdo con la norma TIA-222-G.
Tower
designed
to beestá
installed
in a wind
cathegory
C (Exposure
C), as per
La torre
también
diseñada
paraloading
90 km/harea
de viento
básico
con un manguito
standard
TIA-222-G;
open country
de hielo
de 10,00 this
mm.is,
Seflat,
considera
que el and
hielograsslands.
incrementa con la altura.
Lasdesigned
desviaciones
están
basadas
por encima
de 100tokm/h
de viento.
Tower
for 180
Km/h
wind speed,
according
TIA-222-G
standard.
de la
torretoClase
II
TheEstructura
tower is also
sized
withstand
winds of 90 Km/h with a sleeve of ice 10 mm in diameter.
It isCategoría
considered
that, at higher
more de
ice.0,0
Themdeviations are taken into account over
topográfica
1 conaltitudes
alto de cresta
100Cable
Km/hØ4
the(1x7+0):
wind speed.
Rm= 10780N. Pretensión= 10% Rm
20
C=
17.3 m
NOTAS PARA EL DISEÑO DE LA TORRE
Yagi antenna (ref. 1495)
L
HS
4E
18.0 m
.87
59
16.5 m
m
Ref. 3031
10
IT=
%
15.8 m
15.0 m
Tower
structure Class
II Ver refs. en margen izquierdo
Configuración
tramos:
Topographic
category
1: The
height of ref.
the 3048
elevated is 0.0 m.
Torre montada
en base
basculante
GuyCada
wire:cable
Ø3 (1×7+0);
> 7000
N; Initial
Rm
se anclaRmen
la zapata
a unatension:
argolla 10%
ref. 3058
14.3 m
13.9 m
13.5 m
4E
HS
Ref. 3031
=
LC
m
92
12.0 m
Each guy wire is attached to an anchor ring ref. 3058.
0%
=1
IT
11.3 m
Ref. 3031
Configuration
of sections:
references
Cálculos realizados
conSee
antena
DAT HDon the left margin.
Tower mounted on a pivoting base, ref. 3048.
.04
17
12.8 m
It takes into account the reactions shown in the figure.
Se tienen en cuenta todas las reacciones
10.5 m
9.8 m
9.0 m
8.3 m
Ref. 3031
9.4 m
4
EH
S
LC
=1
3.
64
01
7.5 m
6.8 m
6.0 m
m
IT
=
10
%
Max reactions base
V: 29123 N
H: 158 N
5.3 m
4.5 m
Ref. 3031
3.8 m
3.0 m
4.4 m
4E
HS
LC
=
98 N
Moment
0 N-m
I T=
1
158 N
Moment
0 N-m
10614 N
Torsión 0 N-m
Reactions - Wind 180 Km/h
13
8589 N
R=10.0000 m
4N
65
0.0 m
509
m
21098 N
1.5 m
0.8 m
10.
8
Torsion 1 N-m 0%
Wind 90 Km/h - 10 mm Ice
2.3 m
Ref. 3037
29123 N
23
TIA-222-G - Service - 100 Kph
Maximum Values
EN
Deflection (mm)
Elevation (m)
0
26.5000
50
Tilt (deg)
100
0
0.5
Twist (deg)
1
0
0.5
26.5000
24.0000
24.0000
23.2500
23.2500
22.5000
22.5000
21.7500
21.7500
21.0000
21.0000
20.2500
20.2500
19.5000
19.5000
18.7500
18.7500
18.3750
18.3750
18.0000
18.0000
17.2500
17.2500
16.5000
16.5000
15.7500
15.7500
15.0000
15.0000
14.2500
14.2500
13.8750
13.8750
13.5000
13.5000
12.7500
12.7500
12.0000
12.0000
11.2500
11.2500
10.5000
10.5000
9.7500
9.3750
9.7500
9.3750
9.0000
9.0000
8.2500
8.2500
7.5000
7.5000
6.7500
6.7500
6.0000
6.0000
5.2500
5.2500
4.5000
4.5000
3.7500
3.7500
3.0000
3.0000
2.2500
2.2500
1.5000
1.5000
0.7500
0.7500
0.0000
0
0.0000
50
100
0
0.5
1
0
0.5
24
COMPOSITION
Tower height (m)
8,5
Qty. Ref.
ANCHORS
14,5
Qty. Ref.
17,5
Qty. Ref.
20,5
Qty. Ref.
23,5
Qty. Ref.
26,5
Qty. Ref.
Pivoting base M180
1
3048
1
3048
1
3048
1
3048
1
3048
1
3048
1
3048
Lower section M180
1
3037
1
3037
1
3037
1
3037
1
3037
1
3037
1
3037
Middle section M180
-
-
1
3031
2
3031
3
3031
4
3031
5
3031
6
3031
Upper section M180
1
3032
1
3032
1
3032
1
3032
1
3032
1
3032
1
3032
Guy wire anchor ring
3
3058
6
3058
6
3058
9
3058
9
3058
12
3058
15
3058
1
3010
1
3010
1
3010
1
3010
1
3010
1
3010
1
3010
Mást 3 m
Height (en m) from base to
points :
A, B, C, D and E.
A
4,6
4,4
5,4
4,4
4,9
5,3
4,4
B
-
7,6
10,6
9,1
10,9
10,9
9,4
C
-
-
-
13,6
16,9
14,9
13,9
D
-
-
-
-
-
19,6
18,4
E
-
-
-
-
-
-
22,6
Distance (in m) between the
center of tower base and guy R
wire anchor point
2
3
4
5
6
9
10
N. of guy wires
1
2
2
3
3
4
5
3 (1x7+0)
3 (1x7+0)
4 (1x7+0)
4 (1x7+0)
4 (1x7+0)
4 (1x7+0)
4 (1x7+0)
Diámeter Ø (mm)
GUY WIRES
11,5
Qty. Ref.
Cable’ breaking load Rm (N)
Total guy wire length, in
meters (m), (theoretical
diagonal).
Initial tension (N)
7000
7000
10780
10780
10780
10780
10780
a
5
5,3
6,7
6,7
8
10,4
10,9
b
-
8,2
11,3
10,4
12,4
14,1
13,7
c
-
-
-
14,5
17,9
17,4
17,1
d
-
-
-
-
-
21,6
21
e
-
-
-
-
-
-
24,7
10% Rm
10% Rm
10% Rm
10% Rm
10% Rm
10% Rm
10% Rm
25
EN
26
Guarantee
Televés S.A. offers a two year warranty from date of purchase to the EU countries. In countries not members of the EU, the legal guarantee is in effect at the
time of sale. Keep proof of purchase to determine this date.
During the warranty period, Televés S.A. is responsible for the failures caused by
defects in material or workmanship. Televés S.A. meet the warranty by repairing
or replacing defective equipment.
Not included in the warranty is damage caused by improper use, wear, handling
third party, catastrophes or any other cause beyond the control of Televés SA
27
EN
3048_001_ES