GEN025 2013 Day 22 Quiz 6: Pick up at H113. (Re-/Late) submission (of Quiz 6) will be accepted at Quiz 7 today. Voting for Papers: June 1 – June 7 Resources for Your Study: Math Helpdesk Moodle: Slides, Responses to Comment Sheets, Forum for Questions, Link to my HP containing Old Quizzes and Finals with Solutions 1 Euler Graphs and Hamilton Graphs Euler Graph オイラーグラフ:A graph having a closed path which visits every edge exactly once すべての辺をちょうど一回通る閉路が存在するグラフ Hamilton Graph ハミルトングラフ:A graph having a closed path which visits every vertex exactly once すべての頂点をちょうど一回通る閉路が存 在するグラフ 2 Euler Graphs and Hamilton Graphs Euler Graph オイラーグラフ:A graph having a closed path which visits every edge exactly once すべての辺をちょうど一回通る閉路が存在するグラフ ⇔ A connected graph such that every vertex is of even degree 連結で全ての頂点の次数が偶数である グラフ Hamilton Graph ハミルトングラフ:A graph having a closed path which visits every vertex exactly once すべての頂点をちょうど一回通る閉路が存 在するグラフ 3 Seven Bridges of K¨ onigsberg: Find a walk through the city that would cross each bridge once and only once. L. Euler (1875) 4 Seven Bridges of K¨ onigsberg: Find a walk through the city that would cross each bridge once and only once. L. Euler (1875) 5 Room with Seven Doors: A security guard wants to check the security system by passing each door exactly once and returns to the starting point. Is it possible to find such a way for this room. 6 Room with Seven Doors: A security guard wants to check the security system by passing each door exactly once and returns to the starting point. Is it possible to find such a way for this room. 7 Quiz 7, 2010 A B D C F E G H I J K L M (a) Explain that there is a Eulerian path but this is not a Eulerian graph. (b) Add an edge to make the graph to be Eulerian. (c) Find a Hamiltonian circuit of the graph. 8 Theorem 7.3. Γ = (V, E) を ハミルトングラフ とする。S ⊂ V を Γ の頂点の部分集合とする。∆ を Γ から S を取り除いた(頂点 S と同時に S を含む辺 も取り除く)グラフとする。このとき、 ω(∆) ≤ |S| で ある。(Let Γ = (V, E) be a Hamilton graph and let S ⊂ V . If ∆ is a graph obtained from Γ removing vertices in S and edges with at least one of the ends is in S, then ω(∆) ≤ |S|.) Proof. C を、ハミルトン 閉路とすると、C を s 個 の連結成分にわけるためには、最低、s 点、取り除かな ければならない。従って、 ω(∆) ≤ |S| である。 9 Theorem 7.3. Γ = (V, E) : Hamiltonian ⇒ ∀S ⊆ V, ω(∆(S)) ≤ |S|, where ∆(S) is a graph obtained from Γ removing vertices in S and edges with at least one of the ends is in S ∃S ⊆ V, ω(∆(S)) > |S| ⇒ Γ = (V, E) : not Hamiltonian 10 Quiz 7, 2011. Show that the graph is not Hamiltonian by applying Theorem 7.3. Describe S, ∆, and ω(∆). d a m b c e g f h j i k n l o 11 Quiz 7, 2011. Show that the graph is not Hamiltonian by applying Theorem 7.3. Describe S, ∆, and ω(∆). d d a m a m b c e g f h j i k n l o b e g f h j i k n l o c S = {c, e, h, k, m}. ω(∆) = 6 > 5 = |S| 12 Problem 6 Explain that each of the following three graphs below are not Hamiltonian by applying Theorem 7.3. What is S? Draw ∆. What is ω(∆)? 13 Problem 6 Explain that each of the following three graphs below are not Hamiltonian by applying Theorem 7.3. What is S? Draw ∆. What is ω(∆)? 14 Definition. (復習) 頂点集合 V が X と Y とに分 けられ、辺はすべて X の頂点と、Y の頂点からなると き、(X と Y を部集合とする) 二部グラフ (bipartite graph) という。二部グラフは頂点が 2 色で塗り分けら れ、同じ色の頂点同士は隣接していないグラフである。 A graph Γ = (V, E) is called bipartite, if V has a partition into two subsets X and Y such that each edge connects a vertex of X and a vertex of Y . A graph is bipartite if its vertex set can be colored black and white such that no vertices of the same color are adjacent. 15 Example: Problem 3. Black 32 White 30 ∃S ⊆ V, ω(∆(S)) > |S| ⇒ Γ = (V, E) : not Hamiltonian 16 Problem 4 (a). Is the 7 × 7 Knight graph Hamiltonian? 7 × 7 のチェス盤でナイトの動けるとこ ろを隣接としたナイトグラフはハミルトングラフか。 White 25 Black 24 ∃S ⊆ V, ω(∆(S)) > |S| ⇒ Γ = (V, E) : not Hamiltonian 17 Problem 4 (c). Is the 4 × n Knight graph Hamiltonian? 4 × n のチェス盤でナイトの動けるとこ ろを隣接としたナイトグラフはハミルトングラフか。 n = 10 OW 10 IB 10 OB 10 IW 10 18 Problem 4 (c). Is the 4 × n Knight graph Hamiltonian? 4 × n のチェス盤でナイトの動けるとこ ろを隣接としたナイトグラフはハミルトングラフか。 OW 10 n = 10 OB 10 IW 10 ∃S ⊆ V, ω(∆(S)) > |S| ⇒ Γ = (V, E) : not Hamiltonian 19
© Copyright 2024 ExpyDoc