COSMOmic for micelles

Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Micelle/water partition: A combination of molecular
dynamics simulations and COSMOmic
D. Yordanova, I. Smirnova, S. Jakobtorweihen
Institute of Thermal Separation Processes, Hamburg University of Technology
Introduction
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Micelles – aggregates of amphiphilic molecules (surfactants)
– Can solubilize hydrophobic compounds
– Used in separation processes
Hydrophilic head
Hydrophobic tail
Hydrophobic
solute
Aqueous solution
ciMicelle
Pi  Water
ci
 Decisive parameter regarding the selectivity and efficiency of micellar systems
COSMOmic as potential screening tool
Graphic: Amalgam Modelmaking Ltd
2
COSMOmic for micelles
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ COSMOmic – extension of COSMO-RS for anisotropic systems
(membranes, micelles)
– Micelle structures – radially divided into
shells
– The last layer should contain only water
– Micelles – assumed as spheres
– Layer thickness – constant
– Different volume in each layer
3
Self-assembly MD simulation
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Micelle structures
– Input for COSMOmic
Self-assembly – a microscopic process
– Molecular dynamics (MD) simulations
216 surfactant monomers
120515 water molecules
50 ns
A random configuration
Max micelle size 50
100 ns
Max micelle size 180
4
Aims of the work
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Self-assembly MD simulations
Suitable micelle structures for COSMOmic
Prediction of partition coefficients of
neutral solutes in micelle/water systems
Influence of micelle structure (size
and shape) on the prediction quality
The same strategy for mixed micelle systems
5
Triton X-series
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Triton X-114, Triton X-100
–
–
–
–
Nonionic surfactants
Triton X-114 – mild extraction conditions
Used in surfactant based extraction processes
Membrane protein purifications
n = 7-8 (Triton X-114)
n = 9-10 (Triton X-100)
 Comparison with theoretical methods is of interest
 Influence of additives (ionic surfactants, salts) on the self-assembly process,
micelle structure, partition behaviour of solutes
Glembin et al., Sep. Purif. Technol. 2014, 127-134.
Safonova et al., Chem. Eng. Res. Des. 2014, 2840-2850.
6
Methods – MD simulations
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Force field – the fundamental model behind every MD simulation
– Interaction model
– Describes the potential energy of a system of particles (molecules and atoms)
Vtotal = Vintramolecular + Vintermolecular
Vintermolecular = Vvan der Waals +
Velectrostatic
Pastor and MacKerell, J. Phys. Chem. Lett. 2011, 1526-1532.
Klauda et al., J. Phys. Chem. B 2010, 7830-7843.
Vanommeslaeghe et al., J. Comput. Chem. 2009, 671-690.
7
Parametrization of Triton X-molecules
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ CHARMM36 additive force field
– CHARMM General Force Field (CGenFF)
for „drug-like“ molecules
– Limited data base
– Triton X-molecules – not available
Parametrization of the Triton X-molecules
 Hydrophobic part:
–
–
–
–
 Hydrophilic part:
6 charges
1 bond
4 angles
8 dihedrals
– 1 dihedral
Yordanova et al., J. Chem. Theory Comput. 2015, submitted.
8
Input structure from self-assembly simulation
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ Input for COSMOmic: micelle structure from a self-assembly simulation
– Snapshot (single micelle)
– Average atomic distributions
[ Jakobtorweihen et al., J. Comput. Chem.
2013, 1332-1340.]
 More physically reasonable
approach
 Reduces the effect of outliers
– Most probable micelle sizes, obtained in the MD
simulations
– The atomic distributions were averaged over at
least 200 micelles
9
Input structure from self-assembly simulation
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ Storm et al. – gaps in the water layer around some micelles, deriving from
another micelle in close proximity
worse prediction quality
– An approach to adjust the atomic
distributions to the correct density
– Surfactant atoms not part of the
micelle, are replaced by an
equivalent amount of water
 Overcomes the effect of outliers, resulting from a deficient water layer around the micelle
Storm et al., J. Phys. Chem. B 2014, 3593-3604.
10
Input structures: pre-assembled micelles
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ Pre-assembled micelles
– A single micelle with predetermined micelle size
– Built with Packmol
– Simulated in a water box for 40 ns
■ Advantages:
– Smaller systems
– A single micelle in the box
no gaps in the water shell
– Micelle size can be freely choosen
Packmol: Martinez et al., J. Comput. Chem. 2009, 2157-2164.
11
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Prediction of partition coefficients in the systems
Triton X-114/water and Triton X-100/water
12
Prediction of partition coefficients between
Triton X-micelles and water
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Triton X-114/ water
Aggregation number = 32
Triton X-100/ water
Aggregation number = 33
 10 neutral solutes
 RMSE = 0.40
 14 neutral solutes
 RMSE = 0.32
RMSE 
1 n 
  log
n i 1 
P
MW ,COSMOmic
i
 log
P
MW ,exp 2
i


13
Prediction of partition coefficients between
Triton X-micelles and water
Triton X-114/ water
Aggregation number = 32
 10 neutral solutes
 RMSE = 0.40
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Triton X-100/ water
Aggregation number = 33
 14 neutral solutes
 RMSE = 0.32
14
Prediction of partition coefficients
Influence of size and shape
■ COSMOmic – assumes the
micelle structure as sphere
 0
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
- the micelle is perfect sphere
 Micelle geometry (size and shape) has an effect on the prediction quality
 Structures which show the most stable results are favored
15
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Prediction of partition coefficients in mixed
micellar systems
16
Prediction of partition coefficients
in the system Triton X-114/SDS
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ Most technically applicable micelle systems – mixed micelles
■ Influence of the anionic surfactant Sodium Dodecyl Sulfate (SDS)
■ Self-assembled micelles
– Triton X-114 and SDS – equimolar
(100 ˣ Triton X-114, 100 ˣ SDS, 83234 ˣ Water, 100 ˣ Na
■ Pre-assembled micelles
– Constant Triton X-114/SDS ratio
– Aggregation numbers – 40, 50, 100
17
Prediction of partition coefficients
in the system Triton X-114/SDS
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ Self-assembled micelles
 No significant differences in the obtained
aggregation numbers, eccentricities, RMSEs
■ Pre-assembled micelles
 Worse prediction quality when using larger
micelles (100)
18
Prediction of partition coefficients
in the system Triton X-114/SDS
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ Self-assembled micelle:
■ Pre-assembled micelle:
– Aggregation number = 44
– RMSE = 0.30
– Aggregation number = 40
– RMSE = 0.32
9 neutral solutes
 RMSEs in mixed micelles – in the same range as in the pure Triton X/water systems
19
Conclusions and outlook
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Micelle structures from MD simulations for both pure and mixed micelle
systems
– Both self-assembled and pre-assembled micelles can be used as input for
COSMOmic
– Small spherical micelles are recommended
Prediction of partition coefficients
– An overall good agreement with experimental results for neutral solutes in both
Triton X/water systems and in mixed micelle systems
Future work
– Influence of other additives (cationic surfactants, salts)
– Prediction of partition coefficients of charged solutes
– Simulation of other nonionic surfactants
20
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
Acknowledgements:
Thank you for your attention!
Cloud Point Extraction
T > Cloud Point
Temperature
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
water-rich
phase
surfactant-rich
phase
22
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
23
ParamChem
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
 Automation of the CGenFF
 Input: mol2 file (structure)
 Assignment of parameters by analogy
 Output: CHARMM toppar stream file
 “Penalty” – the highest penalty score of the associated
http://www.paramchem.org
parameters
Vanommeslaeghe and MacKerell, J. Chem. Inf. Model. 2012, 3144-3154.
24
Parametrization workflow
Structure Preparation
(PSF/PDB files)
Geometry optimization (QM)
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
– According to the CGenFF parametrization procedure
MP2/6-31G(d)
level of theory
CHARGES
Water Interaction Energy (QM)
Charge optimization
BONDS & ANGLES
HF/6-31G(d)
interactions with
a TIP3P water
molecule
Hessian calculation (QM)
Bond & Angle optimization
DIHEDRALS
Torsion Scans (QM)
Dihedral optimization
MP2/6-31G(d)
Potential Energy
Scans (PES)
– Force field Toolkit Plugin (ffTK)
– Gaussian 03
Mayne et al., J. Comput. Chem. 2013, 2757-2770.
25
Optimized dihedrals
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
– 8 dihedrals optimized in the hydrophobic part
(1,1,3,3-tetramethyl-benzene)
Energy
[kcal/mol]
– 1 dihedral optimized in ethylene
glycol monomethyl ether
Energy
[kcal/mol]
Conformation
RMSE = 0.125
Conformation
RMSE = 0.044
 Very good agreement with QM potential energy scans
26
Self-assembly simulations
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ Critical micelle concentration (CMC)
– 0.17 mM (Triton X-114)
– 0.22 mM (Triton X-100)
■ Much higher concentrations in the simulations
Surfactant
Surfactant
molecules
Water
molecules
Total
number of
atoms
Csurf [mol/L]
T [K]
Simulation
time [ns]
TX114
216
53360
180168
0.22
313
100
TX114
216
53360
180168
0.22
283
200
TX114
216
120515
381633
0.1
283
200
TX100
216
53407
183333
0.22
283
200
■ Very large systems
■ Limitations due to the system size
Linke, Methods Enzymol. 2009, 603-617.
Cuypers et al., Chemosphere 2002, 1235-1245.
27
COSMOmic
Technische Universität Hamburg-Harburg
Institut für Thermische Verfahrenstechnik
■ COSMO-RS – Conductor like Screening Model for Real Solvents
– based on quantum chemistry and statistical thermodynamics
■ COSMOmic – extension of COSMO-RS for anisotropic systems (membranes, micelles)
– Aggregates are radially divided in layers
– Probability of a solute to be suited in each layer can be calculated
Chemical potential:
MX r, d   MX ,res r, d   MX ,comb r, d 
d
r
Partition function:
X
  M
r , d  
Z   Z ri    exp

kT
i
i
i


X
M
n
n
X
m
m
Probability:
 MX (ri ) 
Z
X
M
ri 
Z MX
 Free energy profile
 Partition coefficient
r – layer; d – direction of solute
Klamt et al., J. Phys. Chem. B 2008, 12148-12157.
28