Hyperspectral Imaging: General Introduction Process Analysis & Technology Prof. emer. Dr. R. W. Kessler Process Analysis and Technology PA&T Reutlingen University, Germany Prof. Dr. Rudolf Kessler Prof. Dipl. Phys. W. Kessler STZ Technology Transfer Center Process Control and Data Analysis 72762 Reutlingen, Germany Further Reading R. W. Kessler, Perspectives in process analysis. J. Chemometrics, 2013, 27: 369–378. doi: 10.1002/cem.2549 B. Boldrini, W. Kessler, K. Rebner and R. W. Kessler Hyperspectral imaging: a review of best practice, performance and pitfalls for inline and online applications, Journal of Near Infrared Spectroscopy 2012, 20, 438–508 © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Agenda • Concepts and trends in manufacturing • Taxonomy of spectral imaging techniques • Sensitivity, selectivity and robustness • Selected examples • Focus on wood • Summary © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Agenda • Concepts and trends in manufacturing • Taxonomy of spectral imaging techniques • Sensitivity, selectivity and robustness • Selected examples • Focus on wood • Summary © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Concepts Manufacturing and Processing Industry: • Provides 70% of the wealth of the German society although only around 30 % of the population work in the manufacturing industry!!!, • 90% of IT research is financed by the manufacturing industry • • • • • Manufuture of the EU PAT/QbD of the FDA BDI 2006: 32 Thesen Factbook 06 (VCI) „Chemie 2030 - Globalisierung gestalten“ EU’s 20-20-20 goals (20% increase in energy efficiency, 20% reduction of CO2 emissions, and 20% renewables by 2020) • Namur road map: Prozess-Sensoren 2015+ • World Manufacturing Forum 2012 • Industrie 4.0 Trends: Aging of the population: medical systems Urbanisation and megacities Personalization of products and goods „Internet of Things“ © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Knowledge Based Production and Causality Adaptive Processing First Principles Knowledge based Production Consistent Output Variable Material Input & Mechanistic Models Causality Correlative and Descriptive Models Fixed Process Variable Output Models - First principles - DoE - Soft modelling - Molecular markers (specroscopy) © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University but…….. Culture ……. "Heaven is where the police are British, the chefs French, the mechanics German and the lovers Italian and it is all organised by Swiss” “Hell is where the chefs are British, the mechanics French, the lovers Swiss, the police German and it is all organised by the Italians." © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Toolbox Multimodal Optical Spectroscopy wide spectral range I MIR/Raman Fluorescence NIR UV/VIS N N N N Fluorescence UV Reflection NIR IR Raman Transmission Different experimental setup x spatial scan (x,y) y Hyperspectral imaging © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Key-Issue: Spectroscopy in Scattering Systems The Basic Idea: Absorption AND Scatter = Chemistry and Morphology Use Scatter as Information!!! Separate Scatter from Absorption Integrate this Information into your Modelling: e.g. MCR, SBC, Multiblock Theory: you need more than 1 measurement e.g. Kubelka Munk, RTE © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Toolbox Chemometrics: Increase Selectivity!! Some information + redundant information Find small portion of useful information Univariate data analysis Explorative multivariate data analysis (PCA, etc.) Some information + no information Multivariate regression and classification (MLR, PLS, Some information RBF, Kohonen.......) + Optical principal component non-specific analysis information MCR, Multiblock, … © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Measurements Data Knowledge Causality The Japanese eat very little fat and suffer fewer heart attacks than the British or the Americans. The French eat a lot of fat and also suffer fewer heart attacks than the British or the Americans. The Japanese drink very little red wine and suffer fewer heart attacks than the British or the Americans. The Italians drink a lot of red wine and also suffer fewer heart attacks than the British or the Americans. Conclusion: Eat and drink whatever you like. It's speaking English that kills you. What is wrong? To draw conclusions from random or spurious correlations © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Agenda • Concepts and trends in manufacturing • Taxonomy of spectral imaging techniques • Sensitivity, selectivity and robustness • Selected examples • Focus on wood • Summary © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Chemical/Spectral Imaging CHEMICAL CHARACTERIZATION PHYSICAL/ MORPHOLOGICAL CHARACTERICHEMICAL ZATION IMAGING = Absorption + Scattering IMAGING © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Chemical Imaging Techniques Wavelengths: UV/VIS 2D- Fluorescence with FLIMS NIR IR Raman Pushbroom Imaging Simultaneous (x, ) Sequential (y) Staring Imaging Whiskbroom Simultaneous (x, y) Sequential () Staring Whiskbroom Imaging x Sequential (x, y, ) y Hyperspectral imaging Specular and Diffuse Reflectance, Transmittance, Polarisation © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Advantage Whiskbroom: high flexibility • High Optical Throughput • High Sensitivity (high S/N), Dark Field, Bright Field • Fast Scanning System with High Lateral Resolution • Multimodal Spectroscopy, Transmittance, Reflectance • Same Sample- Same Location- Different Wavelength- no optical changes • No Photon Diffusion (Illumination = Detection) • Easy to calibrate • all Microscopy Techniques Optional • High Collection Efficiency But: time consuming © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Example Whiskbroom Imaging © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University WITEC – PA&T System FLIM CCD Vis spectrometer 2D Fluorescence NIR spectrometer CCD brightfield Raman spectrometer darkfield multi-mode fiber CCD Glioblastoma edge filter laser reflection single-mode fiber holographic beam splitter nearfield image Glioblastoma white light objectiv z-stage CCD Glioblastoma Nearfield unit with Solid immersion lens (SIL) piezo scanner SNOM unit transmission © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Staring Imaging 0.35 0.30 Extinktion 0.25 0.20 0.15 0.10 0.05 1000 advantage 1100 1200 1300 1400 1500 1600 1700 Wellenlänge [nm] - high lateral resolution - easy to implement - high information density - but: motion stop needed - but: calibration and focus difficult, homogeneous illumination may be difficult © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University 1800 1900 2000 Staring Imaging: Contrast enhancement by absorption 650 nm 550 nm 450 nm 1.200 1.100 1.000 Absorption 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 Wellenlänge [nm] © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Laterale Achse Pushbroom Imaging Extinktion Spektrale Achse advantage - flexible inline and real time applications - no motion stop needed - good compromise between spatial and wavelength resolution - but: different optical and spatial resolution in x- und y- direction © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Inline: Pushbroom Imaging Technology © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University SNAP SHOT Imaging DEMO video available on: http://vimeo.com/77218620 Data Cube in Spectral Imaging (2nd spatial dimension) (time coordinate, if sample is moving) y-axis Spectrum for one pixel x-axis (1st spatial dimension) Distribution map for one wavelength © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Agenda • Concepts and trends in manufacturing • Taxonomy of spectral imaging techniques • Sensitivity, selectivity and robustness • Selected examples • Focus on wood • Summary © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Example Darkfield Glioblastoma Vis Backscattering Light RGB: TP53 © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Example Label Free Karyotyping by Backscattering © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Enhanced Selectivity: Derivative Spectroscopy: UV-Vis, NIR….. concentration A + 2B concentration A + B original 1st derivative concentration A be aware: E = h c/λ 200nm = 50 000 cm-1 250nm = 40 000 cm-1 Δ = 50nm, Δ = 10 000 cm-1 2nd derivative Δ Raman, MIR app. 4000 cm-1!!!! © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Robustness: Specular and Diffuse Reflectance of a Cavity on a Surface parallell high concentration ? Model System: cellulose/ dyed cellulose high lateral resolution!! crossed Specular Reflection I0 Δn low lateral resolution due to photon diffusion!! © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Specrograph light source sample moving direction 45R45 light source sample moving direction 45R0 CCD Array diffuse light source Specrograph CCD Array CCD Array Specrograph Robustness: Inline Illumination – Detection Set Up sample moving direction dR0 © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Inline Illumination pushbroom imager light source diffusors © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Absorption and Scattering: Penetration of Photons Real Life ASA tablet measured calculated R T Penetration Depth!!!! © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Scale of Scrutiny 0.3 Si-based CCD mixed??? Penetration depth/cm 0.25 281 Mpa 156 Mpa 0.2 InGas-based detectors 0.15 3rd overtone in NIR 0.1 many small measurement spots are better than one large spot in spectroscopy!!! 0.05 0 400 600 800 1000 1200 1400 1600 1800 2000 wavelength/nm Optical penetration depth of Theophyllin tablets with different API concentrations, calculated from S and K © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Agenda • Concepts and trends in manufacturing • Taxonomy of spectral imaging techniques • Sensitivity, selectivity and robustness • Selected examples • Focus on wood • Summary © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Chemical Imaging Plastic Sorting HELIOS NIR/SWIR Smart Camera System • Sensor Data Processing HELIOS – – Smile-, Keystone-, Black Drift Corr., Defectpixel Elim., Calibration, etc... • Spectra Preprocessing – Derivative, Norm., etc... • Feature Extraction – Mean Intens., Baseline Slope, etc.. • Feature Combination Illumination – Metal Sensor FG / BG Segmentation, etc... • Classification – Spectra, Colour • Object Processing – Colour, Shape, Size, Structure, Material • Decision – Conveyor belt and/or chute for material transportation e.g. Control of Air Valves Hard Real Time Processing of > 80 000 high-res. Spectra / Second > 300 high-res. Spectral Images / Second Valve Block DL AW © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University 34 e.g. PP/PES in Non Wovens: enhanced Selectivity using Chemometrics 1.2 120 0/100 100 0.6 70/30 predicted 75/25 PC 2 PLS 80 0.0 60 40 50/50 20 100/0 0 -0.6 20/80 0 20 40 60 80 100 120 measured 0.8 PP/PES -1.2 -2 -1 0 1 PC 1 2 E 0.6 0.4 PP PES 0.2 ~210° C 0.0 1000 1200 1400 1600 1800 [nm] NIR spectra © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University 2000 2200 2400 2600 Imaging Thin Films on Aluminium (b) 100 R [%] 80 60 Messung Simulation 40 - ein.Winkel = 30° - dt = 445 nm - n2 = 1,35 k2 = 0,01 20 0 300 400 500 600 700 Wellenlänge [nm] 250 nm 645 nm 415 nm 705 nm 550 nm 805 nm brightfield illumination with polarisation, magnification for visualisation 500 © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University 800 Counterfeit Detection through blister packaging (N.Lewis, Malvern) © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Key Issue: Sample Presentation: Food and Feed (e.g. Bühler) see also: 60 000 rice kernels/sec!! © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Multiplexing: e.g. Reactive Extrusion resp. Hot Melt Extrusion Entrance slit with fiber optic mounting prism / grating / prism Camera λ x optics Pushbroom Imaging System reactive Extrusion Hot Melt Extrusion Reaction Tomography!!! Courtesy of Rottendorf Pharma GmbH © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Multipoint Spectroscopy Extend to many measurement positions by using several fibre bundles Very flexible, adjustable to any need © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University 2mm thickness Coated Tablet 2mm thickness + Coating I0 = 80 cm-1 = 5 cm-1 API Absorbance decreases with coating thickness But: Increases with distance Illumination Tablet Illumination Photon Diffusion Spectroscopy I0 = 180 cm-1 = 2 cm-1 © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University ! Reaction Tomography in a Microreactor Camera x, s Absorbance Pushbromm Imager Objective Microreactor Microreactor © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Optical Spectroscopy and Reactor Tomography Illumination Catalyst Pushbroom © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Agenda • Concepts and trends in manufacturing • Taxonomy of spectral imaging techniques • Sensitivity, selectivity and robustness • Selected examples • Focus on wood • Summary © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Example: dry- and wet processing of wood Dry Process Drying Non woven Moulding press Wood chips Blow line Defibrator Hot press Vat Fibre mat © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Wet Process Concept: Multi Information Manufacturing © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University In-Line Control during Manufacturing: Control of Flutter Diffuse Reflectance Probe and Spectral Imaging © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Morphology and Chemistry reminder: sensitivity absorption and scatter Spruce Beech Cross-section 20 µm magnification 100 x © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Spectra 370-600nm, Selection Absorbance process variables: DoE at the production plant • severity steam treatment (temperature-time) • severity mechanical refining (type, distance, rotation) • Wood mixture (spruce, spruce with bark, spruce/beech) original 1st derivative 3rd derivative 2nd derivative © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University PCA of Vis-Spectra of Fibreboards: DoE at the Plant 380-700 nm reflectance PCA-Analysis of Spectra Clustering in wood mixtures Classification of fineness Classification of Severity factor (SFC) © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Distribution of a Resin on Wood Chips OSB © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Summary Spectral Imaging: The Benefit for Society Agro-Food-Manufacturing-Process Industry Health grain quality inspection neonatal and fetal brain diagnostic (non invasive and painless ) identification of contaminants in soil, animal products and food surgery monitoring detection of tooth decay food safety and authenticity Earth observation Environment disaster monitoring plastics sorting and recycling water resource management detection of dangerous waste climate change observation monitoring pollution in enviromental air and water. NASA/Goddard © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University Thank You for Your Attention Acknowledgement Many thanks for their active support to our PhD students at Reutlingen Research Institute, Reutlingen University Karsten Rebner Tobias Merz Barbara Boldrini Edwin Ostertag Lieselotte Barac Sören Hummel Anita Lorenz Sabrina Luckow-Markgraf …. and many others Steinbeis-University Berlin: Prof. W. Kessler ILM Ulm: Prof. Dr. Hibst, Prof. Dr. Kienle University of Tübingen: Prof. Dr. D. Oelkrug Finacial Support by BMBF, Landesstiftung BW, EU, ... Industry...... © Prof. Dr. Rudolf Kessler, STZ Prozesskontrolle und Datenanalyse, Process Analysis & Technology, Reutlingen University
© Copyright 2025 ExpyDoc