Sums of independent Poisson random variables are Poisson random variables. Let X and Y be independent Poisson random variables with parameters λ1 and λ2 , respectively. Define λ = λ1 + λ2 and Z = X + Y . Claim that Z is a Poisson random variable with parameter λ. Why? pZ (z) = P (Z = z) z X = P (X = j & Y = z − j) = = = j=0 z X j=0 z X j=0 z X j=0 z X so X + Y = z P (X = j)P (Y = z − j) since X and Y are independent e−λ1 λj1 e−λ2 λz−j 2 j! (z − j)! 1 e−λ1 λj1 e−λ2 λz−j 2 j!(z − j)! z! e−λ1 λj1 e−λ2 λz−j 2 multiply and divide by z! j!(z − j)! z! j=0 z −λ1 j −λ2 z−j X z e λ1 e λ2 = using the form of binominal coefficients j z! j=0 z e−λ X z j z−j = λλ factoring out z! and e−λ1 e−λ2 = e−λ1 −λ2 = e−λ z! j=0 j 1 2 = e−λ (λ1 + λ2 )z z! e−λ λz = z! = using binomial expansion (in reverse) −λ z So altogether we showed that pZ (z) = e z!λ . So Z = X + Y is Poisson, and we just sum the parameters. What about a sum of more than two independent Poisson random variables? Say X1 , X2 , X3 are independent Poissons? Then (X1 + X2 ) is Poisson, and then we can add on X3 and still have a Poisson random variable. So X1 + X2 + X3 is a Poisson random variable. Works in general. Once we know it for two, we can keep adding more and more of them. So if X1 , X2 , . . . , Xn are independent Poisson random variables with parameters λ1 , λ2 , . . . , λn , then X1 + X2 + . . . + Xn is a Poisson random variable too, with parameter λ1 + λ2 + . . . + λn . 1
© Copyright 2024 ExpyDoc