slides

Properties of gases
•
•
•
Ideal & real gases !
•
Applications of kinetic
theory
Kinetic theory of gases!
Maxwell-Boltzmann
distribution!
Collision Frequency, z
•
•
•
Volume swept-out by a single particle
⇡d2 hvrel i t
Number of collisions for one particle = volume × number density
Collision frequency for one particle = number of collisions in unit time
Collision Density, Z
•
Collision density is the total number of collisions occurring per unit volume
Mean free path
=
v⇥
z
Applications of kinetic theory
•
•
•
•
Effusion!
Diffusion!
Thermal Conductivity!
Viscosity
Effusion
•
Gas escapes into a vacuum
through a small hole!
•
No collisions occur after the particles
pass through the hole.!
•
The rate of effusion will be
proportional to the rate at which
particles strike the area defining
the hole!
•
The diameter of the hole is smaller
than the mean free path in the gas!
•
No collisions occur as the particles
pass through the hole
Effusion
Collisions with container walls
⇥V ⇤⇤
⇥V
=
=
m
2 kB T
P (vx )dvx =
⇤
⇤
VP
P (v
(vxx)dv
)dvxx
V
⌅
⇤
⌅
⇤
=A
A tt
=
vvxx 2
0
2
0
0
0
m
m
exp
T exp
BT
kkB
⇥1/2
e
2
mvx
2kB T
⇥
2⇥
2
mv
mvxx dv
x
2k
T dvx
BT
2kB
Collision frequency with wall (per unit area, per unit time)
⇢N =
N
p
=
V
kB T
Effusion
Collisions with aperture
Rate =
dN
pa
= zwall a =
1/2
dt
(2 mkB T )
N kB T
V
⇥
=
kB T dN
V dt
p
dp
d
=
dt
dt
t
p = p0 exp t/⇥
where
⇥=
2 m
kB T
⇥1/2
V
a
dvx
Effusion
dN
pa
= zwall a =
1/2
dt
(2 mkB T )
p = p0 exp t/⇥
p
Rate =
t
•
Graham’s law of effusion!
•
Rate of effusion of a gas is inversely proportional to the square
root of the mass of its particles
Transport Properties
Property
Transported
Quantity
Diffusion
Matter
Thermal
Conductivity
Energy
Viscosity
Momentum
Kinetic Theory
D=
1
3
v⇥
1
= ⇥ v⇥ CV [X]
3
Units
m2s-1
J K-1 m-1 s-1
kg m-1 s-1
where
⇥=
Flux
Describes the amount of matter, energy, charge... passing through a unit
area per unit time
For matter flux, Jz
d N
where ρN is the number density.
dz
Fick’s first law of diffusion
Jz =
D=
D
1
3
d N
dz
v⇥
⇥N (
) = ⇥N (0)
zwall
Jleft
⇥v⇤ ⇥N (
=
4
)
⇥v⇤
=
4
d⇥N
dz
N
= ⇢N hV i =
V
⇥N (0)
Jz = Jleft
For matter flux, Jz
⇥
d⇥N
dz
⇥N (+ ) = ⇥N (0) +
0
✓
kB T
2⇡m
⇥ ⇥
◆1/2
Jright
0
Jright =
1
2
= ⇢N
⇥
0
⇥
0
hvi
4
v⇥ ⇥N (+ )
v⇥
=
=
4
4
d⇥N
dz
d⇥N
dz
d⇥N
dz
⇥N (0) +
⇥v⇤
d N
where ρN is the number density.
dz
Diffusion in a Gas
D=
1
2
v⇥
⇥ ⇥
0
⇥N (
d⇥N
dz
) = ⇥N (0)
zwall
Jleft
⇥v⇤ ⇥N (
=
4
)
⇥v⇤
=
4
⇥N (0)
⇥N (+ ) = ⇥N (0) +
0
N
=
V
d⇥N
dz
Jz = Jleft
For matter flux, Jz
⇥
kB T
2 m
⇥ ⇥
⇥1/2
=
Jright
0
Jright =
1
2
v⇥ ⇥N (+ )
v⇥
=
=
4
4
d⇥N
dz
⇥
Diffusion
D=
D
1
3
⇥
0
N v⇥
V 4
0
d N
dz
v⇥
d⇥N
dz
⇥N (0) +
⇥v⇤
d N
where ρN is the number density.
dz
Jz =
d⇥N
dz
D=
D
1
23
v⇥
v⇥
⇥ ⇥
0
Diffusion in a Gas
Thermal Conductivity in a
Gas
T
T
Previously
⇥N (
d⇥N
dz
) = ⇥N (0)
⇥
d⇥N
dz
⇥N (+ ) = ⇥N (0) +
0
⇥
0
Now
zwall
Jz = Jleft
⇥=
N
=
V
kB T
2 m
Jright =
1
kB ⌅N ⇤ v⇥
3
⇥1/2
=
1
2
N v⇥
V 4
dT
dz
⇥
0
kB ⇤N ⇥ ⇥v⇤
1
= ⇥ v⇥ CV [X]
3
Transport Properties
Property
Transported
Quantity
Diffusion
Matter
Thermal
Conductivity
Energy
Viscosity
Momentum
Kinetic Theory
D=
1
3
v⇥
1
= ⇥ v⇥ CV [X]
3
Units
m2s-1
J K-1 m-1 s-1
kg m-1 s-1
Transport Properties
Property
Transported
Quantity
Diffusion
Matter
Thermal
Conductivity
Energy
Viscosity
Momentum
Kinetic Theory
D=
1
3
v⇥
1
= ⇥ v⇥ CV [X]
3
Units
m2s-1
J K-1 m-1 s-1
kg m-1 s-1
Classical Mechanics Summary
•
•
Translation!
•
•
•
•
Newton’s laws!
Equations of motion!
Linear momentum!
Frames of reference &
reduced mass!
Rotation!
•
•
•
Angular momentum!
Moments of inertia!
•
Vibration!
•
•
Simple harmonic motion!
The wave equation!
Work & Energy!
•
Elastic & inelastic
Collisions!
•
Centre of Mass
Properties of Gases Summary
•
•
Ideal & real gases!
•
•
•
pV=nRT!
Virial expansion!
Compression factor!
Kinetic theory of gases!
•
•
•
!
•
Derivation!
Classical equipartition!
Predicting Cv!
•
Maxwell Boltzmann!
•
•
•
(Derivation)!
Collision frequencies!
Mean free path!
Applications!
•
•
Effusion!
Diffusion