Quiz 1 (9th September) (1) R2 (x3 − 4x)dx =? −1 Solution: Z 2 3 (x − 4x)dx = −1 2 x4 2 − 2x 4 −1 24 1 − 2.22 − + 2 4 4 1 = 4−8− +2 4 1 = −4 − + 2 4 1 = −2 − 4 9 = − . 4 = R x2 (2) If g(x) = 1 1t dt, then g 0 (x) =? Solution: Let F 0 (t) = 1t . Then, g(x) = F (x2 ) − F (1) g 0 (x) (3) R √5 = F 0 (x2 ).2x − (F (1))0 1 .2x − 0 g 0 (x) = x2 2 = . x √ x3 25 − x4 dx =? Solution: Let u = 25 − x4 . Then, du = −4x3 dx. Thus, Z Z p p 1 3 4 25 − x4 (−4x3 )dx x 25 − x dx = −4 Z 1 = − u1/2 du 4 12 = − u3/2 43 1 = − (25 − x4 )3/2 . 6 Putting the limits in the integration back, Z √5 p √ 1 1 x3 25 − x4 dx = − (25 − ( 5)4 )3/2 + (25 − 04 )3/2 6 6 0 1 = 0 + 253/2 6 125 = . 6 0 1
© Copyright 2025 ExpyDoc