THEJOURNAL OF BIOLOGICAL CHEMISTRY Vol. 266, No. 1. Issue of January 5 pp. g a l 0 3 1991 0 1991 by The American Society for Biochemistry and Molecular Biology, Inc. hinted in ir~.~. Human Cytotoxic Lymphocyte GranzymeB ITS PURIFICATION FROM GRANULES AND THE CHARACTERIZATION OF SUBSTRATE AND INHIBITORSPECIFICITY* (Received for publication, May 29, 1990) Martin Poe, Joseph T. Blake, David A. Boulton, Maureen Gammon, Nolan H. Sigal, Joseph K. Wu, and Hans J. Zweerink From Merck, Sharp and Dohme Research Laboratories, Rahway, New Jersey 07065 Granzyme B hasbeen purified to homogeneity from the formation of membrane lesions on target cells caused by the granules of a human cytolytic lymphocyte line, cytoplasmic granules from cytolytic lymphocytes (8, 9). Pas631, in an enzymatically active form by a three-step ternak and Eisen (10) discovered that CTL granules contain procedure. 631 granzyme Bhydrolyzed Nu-t-butylox- an active serine protease; subsequent studies have demonycarbonyl-L-alanyl-L-alanyl-L-aspartyl (Boc-Ala-Ala- strated seven serine proteases in murine CTL (11-17) and Asp) thiobenzyl ester with a katof 11 f 5 mol/s/mol two or three serine proteases (18,19) in human CTLgranules. enzyme and catalytic efficiency kCat/K,of 76,000 f A direct role for these proteases in cytolysis has not yet been 44,000 M” s-’. The hydrolysis of Boc-Ala-Ala-Asp identified (20) and has not been universally accepted (21-23), thiobenzyl ester by crude Q31 Percoll fractions paraldespite the fact that a number of protease inhibitors can block leled the tryptase activity for granule-containing fractions, which showed that granzyme B was associated CTL-mediated lysis (24-27). The human analogs of the mouse CTL serine proteases HF with granules. When chromatographed on Sephacryl (28) and CCPl (29), originally identified by subtractive hy5-300, Q31 granzyme B eluted in two broad bands corresponding to dimer and monomer, both of which bridization methods as highly expressed mRNAspecies in electrophoresed at 35 kDA in reducing NaDodSOl CTL, have been identified. H F (30), also known as granzyme polyacrylamide, and both of which showed a lag phase A (18), granzyme 1 (19), tryptase (31), and HuTSP (32), has in assays. The lag phase in assays could be extended been purified to homogeneity by us (31) from a human CTL with 0.03 mM pepstatin. Upon elution from ion-ex- line (Q31). We report here a similar purification for granzyme change chromatography Q31 granzyme B electropho- B, also known as granzyme 2 (19), CCP2 (29), HLP (33), HSE resed at 32 kDa in reducing NaDodS04 polyacryl- 26.1 (34, 35), and SECT (36), from Q31. Granzyme B is the amide and did not have a lag phase in assays. The granzyme most specifically found in CTL (37-39). This puamino-terminal sequence of the 32-kDa Q31 granzymerification differed from earlier purifications of human CTL B was identical to four other human cytotoxic T-lym- granzyme B (18,19)in minor details, but differed importantly phocyte granzymes B in18 of 18 positions sequenced. in producing an enzymatically active granzyme B, and thus Purified Q 3 l granzyme B hada preference for sub- demonstrated that granzyme B truly is an enzyme. Q31granstrates with Glu or Asp as the residue amino-terminal zyme B had significant activity with Boc-Ala-Ala-Asp thioto thescissile bond; little or no activity wasnoted with benzyl ester, whichwas synthesized (40) to evaluate the oligopeptidesubstrates for trypsin-like, chymotrypsin- prediction by Murphy et al. (41) that granzyme B would like, and elastase-like proteases. Human plasma a1- hydrolyze substrates with aspartyl residues at PI.’ The isolaprotease inhibitor, human plasma az-protease macro- tion of granzyme B in an enzymatically active form should globulin, soybean and lima-bean trypsininhibitors, bovine aprotinin, phosphoramidon, and chymostatin advance studies of the role of this enzyme in cytolysis. inhibited Q31granzyme B. The inhibition by al-proMATERIALSANDMETHODSANDRESULTS3 tease inhibitorwas rapid enough to be of physiological significance. DISCUSSION Cell-mediated killing by cytotoxic T-lymphocyte (CTL)’ is an important immunologic defense against tumor cell proliferation, viral infection, and transplanted tissue (for reviews, see Refs. 1-7). CTL-mediated killing i s often associated with * The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “aduertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. The abbreviations used are: CTL, cytotoxic T-lymphocytes; BAADT, Boc-Ala-Ala-Asp-SBzl,N“-t-butyloxycarbonyl-L-alanyl-Lalanyl-L-aspartyl-thiobenzylester; Buffer A, 0.3 M NaCI, 0.1 M NaHepes, pH 7.0, 1 mM Na2-EDTA, 0.05% (v/v) Triton X-100; PIPES, piperazine-N,N’-bis (2-ethanesulfonic acid); EGTA, [ethylenebis(oxyethylenenitrilo)]tetraacetic acid; SBzl, thiobenzyl ester; Succ, Ne-succinylamide;pNA, p-nitroanilide; MeOSucc, Nu-methoxysuccinylamide; TLCK, N“-tosyl-L-lysylchloromethyl ketone. Human Q31 CTL granzyme B was purified to homogeneity as a32-kDa protein in reducing NaDodSOr electrophoresis in an enzymatically active form by a three-stepprocedure. Granzyme B previously had been purified to homogeneity from human cytotoxic T-lymphocytes by Krahenbuhl et al. (18) and Hameed et al. (19). It was unclear whether these forms of granzyme B were enzymatically active, since they were not tested with appropriate substrates. It was significant to find Q31 granzyme B to be enzymatically active, since leukocyte granules have been shown to containproteins similar in ‘The terminology of the reactive-site residue positions is from Schechter and Berger (42). Portions of this paper (including “Materials and Methods,” “Results,’’ Tables 1-5, and Figs. 1-7) are presented in miniprint at the end of this paper. Miniprint is easily read with the aid of a standard magnifying glass. Full size photocopies are included in the microfilm edition of the Journal thatis available from Waverly Press. 98 Human Lymphocyte Granzyme Cytotoxic B 99 Q31 granzyme B was active at acidic pH (see Fig. 7), in sequence to serine proteases but devoid of proteolytic activity, e.g. the antibacterial protein azurocidin from the azurophil contrast to Q31 tryptase whose BLT esterase activity disapgranules of human neutrophils (43). Purified 631 granzyme peared below pH7 (31). Thus, at the acidic pH of lytic B hydrolyzed Boc-Ala-Ala-Asp-SBzlwith a katof 680 & 280 granules (about 6.1, 52), granzyme B would be active, which mol hydrolyzed/min/mol enzyme and a catalytic efficiency may be the reason that it is stored as an inactive precursor. (kcat/&) of 76,000 f 44,000 M-' s-'. While this ratewas much The subsite specificity of the 32-kDa form of purified Q31 lower than the hydrolysis of Cbz-Lys-SBzl by Q31 granzyme granzyme B was investigated using the 33 oligopeptide subA (tryptase kat/&= 225,000 M" s-' (31)), it was near the strates listed in Table 4. The inhibition of the ~-glutamyl-2-naphthylamide hydrorates of hydrolysis of N-acetyltryptophanyl estersby chymolase activity of Q31 granzyme B by the 18 compounds listed trypsin, for which kcat/& was 4,600, 4,900, and 254,000 s-' for ethyl-, methyl- and 4'-nitrophenyl-esters, respectively in Table 5 confirmed the substrate preference data in Table A pref- 4. The lack of inhibition by benzamidine, leupeptin, and (44). It also hydrolyzed ~-glutamyl-2-naphthylamide. erence of granzyme B for substrates with Asp or Glu at PI, phenylmethylsulfonyl fluoride showed a lack of trypsin-like the residue whose a-carboxyl peptide linkage was hydrolyzed, character, while the lack of inhibition by Nu-Cbz-L-phenylwas predicted by Murphy et al. (38). While a preference for alanyl chloromethyl ketone and phenylmethylsulfonyl fluoAsp/Glu at PI was unusual for a protease, a few other pro- ride showed a difference from chymotrypsin-like enzymes. teases have shown this preference, Staphylococcus aureus V8 The lack of inhibition by elastatinal showed that Q31 granprotease (45) and the mammalian multicatalytic proteinase zyme B is not elastase-like. The inability of EDTA and EGTA (46,47). Goetzl et al. (48) found that cultured T-lymphocytes to inhibit Q31 granzyme B showed that itis not ametalloprohave a major cleavage of vasoactive intestinal peptide car- teinase, and the lack of inhibition by pepstatin showed that boxyl-terminal to Asp-3. This cleavage is quite sensitive to Q31 granzyme B is not an aspartic proteinase like cathepsin phosphoramidon, but insensitive to phenylmethylsulfonyl flu- D. In contrast to Q31 tryptase (31), Q31 granzyme B is not oride and leupeptin, like granzyme B. The Boc-Ala-Ala-Asp-SBzlesterase activity of Q31 CTL significantly inhibited by human plasma antithrombin 111. appeared to associate almost exclusively with granzyme B. As The inhibition of Q31 granzyme B by human plasma a1shown in Fig. 1, Boc-Ala-Ala-Asp-SBzl esterase activity in protease inhibitor is rapid and almost complete at 0.01 mg/ Percoll fractions paralleled the BLTesterase (tryptase)activ- ml. Ifthe reaction were 100-130-foldfaster andmore complete ity, except for the bottom layer where a technical problem at the normal human plasma level of1-1.3 mg/ml for a'masked the parallelism. Since tryptase activity has been protease inhibitor (53), the inhibition would be fast enough shown to be a marker for lytic granules (49-51), the parallel- to be of physiological significance by the criteriaof Bieth (54, ism suggested that granzyme B is also associated with lytic 55). granules. The other substrate of granzyme B, ~-glutamyl-2REFERENCES naphthylamide, was appreciably hydrolyzed by the superna1. Tschopp, J., and Jongeneel, C. V. (1988) Biochemistry 27,2641tant (top layer) of the Percoll gradient, as well as by the 2646 fractions that hydrolyzed Boc-Ala-Ala-Asp-SBzl, which 2. Podack, E. R. (1985) Immunology Today 6, 21-27 showed that Q31 CTL has more than one enzyme which 3. Young, J. D., and Cohn, Z. A. (1986) Cell 46,641-642 Since the supernahydrolyzes ~-glutamyl-2-naphthylamide. 4. Henkart, P. A. (1985) Annu. Rev. Imrnunol. 3 , 31-58 tant corresponded to thecytoplasmic fraction, it was possible 5. Cerottini, J., and MacDonald, H. R. (1987) Ann. Znst. Pasteur that a Q31 cytoplasmic multicatalytic proteinase (46, 47) is Zmmunol. 138,289-342 6. Young, J. D. (1989) Physiol. Rev. 69, 250-314 responsible for the excess ~-glutamyl-2-naphthylamide hy7. Khavari, P. (1987) Yale J. Biol. Med. 60,409-419 drolysis by the Percoll supernatant fraction above the hy8. Nabholz, M., and Tschopp, J. (1989) Zmmurwl. Lett. 20,179-180 drolysis that was in proportion to the tryptase; the latter 9. Joag, S., Zychlinsky, A., and Young, J. D. (1989) J. Cell. Biochem. activity probably was due to broken granules. 39,239-252 Q31 granzyme B appeared to be stored in lytic granules in 10. Pasternak, M. S., and Eisen, H. N. (1985) Nature 314, 743-745 a 35-kDa, relatively inactive form. After solubilization in high 11. Masson, D., Nabholz, M., Estrade, C., and Tschopp, J. (1986) EMBO J. 5,1595-1600 salt andafter molecular sieve chromatography at pH4.5, the fractions that would yield granzyme B upon ion-exchange 12. Pasternak, M. S., Verret, C. R., Liu, M. A., and Eisen, H. N. (1986) Nature 322, 740-743 chromatography at pH 6.0 electrophoresed in reducing Na- 13. Young, J. D., Leong, L. G. Liu, C., Damiano, A., Wall, D. A,, and DodSOawith principal bands a t 28 kDa (tryptase) and35 kDa Cohn, 2. A. (1986) Cell 47,183-194 (see Fig. 5). When assayed for ~-glutamyl-2-naphthylamide14. Simon, M.M., Hoschutzky, H., Fruth, U., Simon, H.G., and Kramer, M. D. (1986) EMBO J. 5, 3267-3274 hydrolysis, the molecular sieve chromatography fractions had a substantial lag phase before a steady enzymatic rate was 15. Masson, D., and Tschopp, J. (1987) Cell 49,679-685 D., Rey, C., Haefliger, J., Qiao, B., Groscurth, P., and seen, as for the crude homogenate in Fig. 4. The lag was also 16. Jenne, Tschopp, J. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 4814seen with Boc-Ala-Ala-Asp-SBzl hydrolysis but was less 4818 clearly seen because of the appreciable nonenzymatic rate of 17. Jenne, D. E., Masson, D., Zimmer, M., Haefliger, J., Li, W., and Tschopp, J. (1989) Biochemistry 28, 7953-7961 Boc-Ala-Ala-Asp-SBzlhydrolysis. The amino-terminal sequence of the purified 32-kDa form 18. Krahenbuhl, O., Rey, C., Jenne, D., Lanzavecchia, A., Groscurth, P., Carrel, S., and Tschopp, J. (1988) J . Zrnmunol. 141, 3471of Q31 granzyme B was identical to the sequence predicted 3477 from the cDNA sequence for humanTSP granzyme B (33) as 19. Hameed, A., Lowrey, D. M., Lichtenheld, M., and Podack, E. R. well as to thehuman granzymes B purified by Krahenbuhl et (1988) J. Zmmurwl. 141,3142-3147 al. (18) and Hameed et al. (19). It differed from mouse gran- 20. Kramer, M. D., and Simon, M. M. (1987) Zmmunol. Today 8, 140-142 zyme B (11-17) at 2 of 18 positions and Q31 tryptase at 5 of 18positions (31). In thepreparation of purified 6 3 1 granzyme 21. Henkart, P. A., Berrebi, G. A., Takayama, H., Munger, W. E., and Sitkovsky, M. V. (1987) J. Zmrnunol. 139,2398-2405 B for sequenator analysis, it was discovered that when the 32- 22. Berke, G . (1989) Imrnunol. Lett. 20, 169-178 kDa form was incubated at pH 6 theprotease was autodiges- 23. Ostergaard, H.L., and Clark, W. L. (1989) J. Zmmunol. 143, tive with several sites of cleavage (data not shown). 2120-2126 "' 100 Human Cytotoxic LJ/mphocyte GranzymeB 24. Chang, T. W., and Eisen, H. E. (1980) Nature 1 2 4 , 1028-1033 25. Redelman, D., and Hudig, D. (1980) J. Immunol. 124,870-878 26. Hudig,D.,Gregg,N. J., Kam, C., and Powers, J. C. (1987) Biochem. Biophys. Res. Commun. 149,882-888 27. Hudig, D., Allison, N. J., Kam, C., and Powers, J. C. (1989) Mol. Immunol. 26,793-798 28. Gershenfeld, H.K., and Weissman, I. L. (1986) Science 232, 854-858 29. Lobe, C. G., Finlay, B. B., Poranchych, W., Paetkau, V. H., and Bleackley, R. C. (1986) Science 232,858-861 30. Gershenfeld, H. K., Hershberger, R. J., Shows, T. B., and Weissman, I. L. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 1184-1188 31. Poe, M., Bennett, C. D., Biddison, W. E., Blake, J. T., Norton, G. P., Rodkey, J. A., Turner, R. V., Wu, J. K., and Zweerink, H. J. (1988) J. Biol. Chem. 263,13215-13222 32. Fruth, U., Sinigaglia, F., Schlesier, M., Kilgus, J. Kramer, M. D., and Simon, M. M. (1987) Eur. J. Immunol. 17,1625-1633 33. Schmid, C., and Weissman, C. (1987) J.Zmmunol. 1 3 9 , 250-256 34. Klein, J. L., Shows, T. B., Dupont, B., and Trapani, J. A. (1989) Genomics 5, 110-117 35. Trapani, J. A., Klein, J. L., White, P. C., and DuPont, B. (1988) Proc. Natl. Acad. Sci. U. S. A. 8 5 , 6924-6928 36. Caputo, A., Fahey, D., Lloyd, C., Vozab, R., McCairns, E., and Rowe, P. B. (1988) J. Biol. Chem. 263,6363-6369 37. Redmond, M. J., Letellier, M., Parker, J . M. R., Lobe, C., Havele, C., Paetkau, V., and Bleackley, R. C. (1987) J. Zmmunol. 1 3 9 , 3184-3188 38. Bleackley, R. C., Duggan, B., Ehrman, N., and Lobe, C. G. (1988) FEBS Lett. 234,153-159 39. Lobe, C. G., Shaw, J., Fregeau, C., Duggan, B., Meier, M., Brewer, A., Upton, C., McFadden, G., Patient, R. K., Paetkau, V., and Bleackley, R. C. (1989) Nucleic Acids Res. 17,5765-5779 40. Kam, C.-M., Odake, S., Narasimhan, L., Poe, M., Blake, J . T., Krahenbuhl, O., Tschopp, J., andPowers, J . C. (1990) Biochemistry, in press 41. Murphy, M. E. P., Moult, J. Bleackley, R.C., Gershenfeld, H., Weissman, I. L., and James, M. N.G. (1988) Proteins 4, 190204 42. Schechter, I., and Berger, A. (1967) Biochem. Biophys. Res. Commun. 27,157-162 43. Wilde, C. G., Snable, J . L., Griffith, J. E., and Scott, R. W. (1990) J.Biol. Chem. 265,2038-2041 44. Bender, M., and Kezdy, F. (1965) Annu. Reu. Biochem. 3 4 , 4976 45. Drapeau, G. R. (1976) Methods Enzymol. 45, 469-475 46. Wilk, S., and Orlowski, M. (1983) J.Neurochem. 40,842-849 47. Dahlmann, B., Rutschmann, M., Kuehn, L., and Reinauer, H. (1985) Biochem. J. 228, 161-170 48. Goetzl, E. J., Kodama, K. T., Turck, C. W., Schiogolev, S. A., and Sreedharan, S. P. (1989) Immunology 66, 554-558 49. Garcia-Sanz, J. A., Velotti, F., MacDonald, H. R., Masson, D., Tschopp, J., andNabholz, M. (1988) Immunology 64,129-134 50. Henkart, P. A., Berrebi, G. A., Takayama, H., Munger, W. E., and Sitkovsky, M. V. (1987) J. Zmmunol. 1 3 9 , 2398-2405 51. Takayama, H., Trenn, G., Humphrey, W., Bluestone, J. A., 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. Henkart, P. A., and Sitkovsky, M. V. (1987) J. Immunol. 1 3 8 , 566-569 Henkart, P. A., Yue, Ch. C., Yang,J., and Rosenberg, S. A. (1986) J.Immunol. 137,2611-2617 Travis, J., and Salveson, G. S. (1983) Annu. Reu. Biochem. 5 2 , 655-709 Bieth, J. G. (1980) Bull. Eur. Physiopathol. Respir. 1 6 , (suppl.) 183-195 Bieth, J. G. (1984) Biochem. Med. 32, 387-397 Biddison, W.E., Rao, P. E., Talle, M.A., Goldstein, G., and Shaw, S. (1984) J. Exp. Med. 1 5 9 , 783-797 Manyak, C.L., Norton, G. P., Lobe,C. G., Bleackley, R. C., Gershenfeld, H. K., Weissman, I. L., Kumar, V., Sigal, N. H., and Koo, G. C. (1989) J. Zmmunol. 142,3707-3713 Podack, E. R., and Konigsberg, P. J. (1984) J. Exp. Med. 160, 695-710 Weber, K., and Osborn, M. (1969) J.Biol. Chem. 244,4406-4412 Poe, M., Breeze, A. S., Wu, J. K., Short, C. R., Jr. andHoogsteen, K. (1978) J. Biol. Chem. 2 5 4 , 1799-1805 Poe, M., Greenfield, N. J., Hirshfield, J. M., Williams, M. N., and Hoogsteen, K. (1972) Biochemistry 11,1023-1030 Poe, M., Bergstrom, A. R., Wu, J . K., Bennett, C. D., Rodkey, J. A., and Hoogsteen, K. (1984) J. Biol. Chem. 259,8358-8362 Ellman, G. L. (1959) Arch. Biochem. Biophys. 8 2 , 70-77 Ellman, G. L. (1958) Arch. Biochem. Biophys. 74,443-450 Lottenberg, R.L., Hall, J. A., Blinder, M., Binder, E. P., and Jackson, C. M. (1983) Biochim. Biophys. Acta742,539-557 Lottenberg, R. L., and Jackson, C.M. (1983) Biochim. Biophys. Acta 742,558-564 Aoyagi, T., Kunimoto, S., Morishima, H., Takeuchi, T., and Umezawa, H. (1971) J.Antibiot. (Tokyo) 2 4 , 687-694 Umezawa, H. (1982) Annu. Reu. Microbiol. 36,75-99 Rich, D. H. (1986) in Proteinase Inhibitors (Barrett, A. J., and Salvesen, G., eds) pp. 179-217, Elsevier Science Publishers, Amsterdam Knight, C.G., and Barrett, A. J. (1976) Biochem. J. 1 5 5 , 117125 Clausbruch, U.C.V., and Tschesche, H. (1988) Biol. Chem. Hoppe-Seyler 369,683-691 Ishikawa, I., and Cimasoni, G. (1977) Biochem.Biophys.Acta 480,228-240 Peters, P. J., Geuze,H. J., Vanderdonk, H. A., Slot, J. W., Griffith, J . M., Stam, N. J., Clevers, H. C., and Borst, J. (1989) Eur. J. Zmmunol. 1 9 , 1469-1475 Barrett, A. J. (1986) in Proteinase Inhibitors (Barrett, A. J., and Salvesen, G., eds) pp. 3-22, Elsevier Science Publishers BV, Amsterdam Van Noort, J. M., and Van der Drift, A.C.M. (1989) J. Biol. Chem. 2 6 4 , 14159-14164 Irvine, G. B., Blumson, N.L., and Elmore, D. T. (1983) Biochem. J. 2 11,237-242 Vanderslice, P., Craik, C. S., Nadel, J . A., and Caughey, G. H. (1989) Biochemistry 28,4148-4155 Hendrick, J. P., Hodges, P. E., and Rosenberg, L. E. (1989) Proc. Natl. Acad. Sci. U. S. A. 86,4056-4060 Human Cytotoxic Lymphocyte GranzymeB Supplem?ntal M a t e r i a l t o 101 Human Cytotoxic Lymphocyte Granzyme B 102 hmmQ3IgrmZymB humanTSP g n n z y m 8 mwse CCPl gram8 human HF 25 16 20 llGGHEAKPHSR I I G G H E A I: P H 5 R I I G GH E V K P H 5 R IIOGNEVTPHSR 16 20 25 P P P P 30 VlAYL 1 MA I L V R ALL VRYLL 30 - "Activation. f a r Q31 granzym 8 Yhen eluted frm Sephacryl 1300. Q31 granzme B had a signif7cmt lag time in enzymtic assays. The lag before f u l l a c t i v i t y was attained can be Seen more c l e a r l y i n h y d r o l y s i s of L-glYtMy~-t-naphthylmide than f o r 8MOT (See Fig. 4). sincethena-enzymaticrate of hydrolysis was m c h smaller than for BMOT. I t twl: 12 nin f o r t h e enzymatic r a t e t o reach a steadyvalve i n trace A. Addition of 0.0DeDStltlnA g r e a t l y extended the activation tin? (trace 81. dlthovghDeDstdtinA d i d nor i n h i b i t t h e activated g r m z w B (see Table 5 ) . I Supernale Top Middle Lower Bottom Layer Band Band Band Layer Enzymatic a c t i r i t i e s o f human 031 CTL Percoll fractions. The cmss-natchedbars represent the BMOT esterase activities of the whole fractions. with the supernate and botto~l l a y e r s i n h i b i t i n g the non-enzymatic 8MOT esterase a l i t t l e . and the Open b a l l IHlreSent BLT esterase IctIvitieS. were chmnutographed a t 4C . A f t e r s o l u b i l i z a t i o n i n a I.%NaCl the Percoll fractions on SeDhdCryl S ~ W i n IM N~CI a t p~ 4.5. a h the fractions containing BARLIT esterase a c t i v i t y were d i l u t e d w i t h 4 volums Hz0 and chmmtographed on nonos as described i n the Methods section(seeTable 2 for yields). A t y p i c a l e l u t i o n o f f M o d I s s ~ m a r l z e din Fig. 2 . showing a clear seoaration of Q31 granzym 8 (mainly i n f r a c t i o n 37) f r m Q31 tryptase ( f r a c t i o n s 35 and 36). Sincethe purified enzym had an N-terminal sequence (see Table 3) I d e n t i c a l t o hman gram8 ( I S , 19. 33. 35. 36) (see Fig. 3) we propose t o call t h i s p r o t e i n 931 grmzyme 8. +30pM Pepstatin 0- The lag phase cwld be g r e a t l y extended by i n c u b a t i m w i t h 0.020~44p w s t a t l n A. a potent and s p e c i f i c I n h i b i t a r of aspartic proteinases (67-69). PepstacinA was sham by Knight and 8 a r r e t t ( 7 0 ) t o be a ~ p O . I n n i n h l b i t o r of cathepsin 0; c a t h e w i n 0 has been found i n h a a n IynQhOCyteS(71.72) and CTL l y t i c granules (73). C a t h e p ~ l n0 has been s h o n t o prefer Cleavage between two bulky hydrwhobic residues (74) i n M P h i p l t h i C alDha-hellCeS (75) an4 10 e x h i b i t a lag phase with certain Substrates (76). Haever.thepreprc-peptide of human g r a n z m 8 i s predicted t o be terminated by a L-glutmyl residue (30.33). as has a l s o been predicted for the Drepm-DeDtideS of Fat mast cell chymase.human neutlmhil elastase and cathepsin G. and mouse IynQhacyte CCP-I and mouse granzyms C.0.E and F (77). so c a t h e w i n 0 would not be expected t o d i r e c t l y activate proprc-granum 8. It was posslble that catheusln 0 served t o enhance the s e l f - a c t i v a t i o n of g n n z w 8. rime the pepstatin-inhibited incubation i n Fig. 4 d i d eventually s h a s m L-glut~lyl-2-naphrhylMlide hydrolase a c t i v i t y . Atwc-step p m t e o l y t i c cleavage has been f w n d In a c t i v a t i m of eight m1tahmdrial proteins (781. The f i r s t DrOteOlYtiC c l e a v w e in the mitcchonerlal proteins *a5 SDeCifiC f o r Arq FRllCTlW NUMBER F i "re 2 E l u t i o n p r o f i l e f o r Q3lgranzynr 8 f r m ~0116. The upper trace. lr$lled A(280). &V monitortrace. The s o l i d l i n e l a b e l l e d NaCl i s the NaCl cmcentratlm i n the eluate. m e l w e r tracesrepresentenzymatic a c t i v i t y : I ) BLT esterase(tryptaseactivity). wen c i r c l e r and dashed lines; 2 ) BMOT esterase (granzym 8 a c t i v i t y ) , c l o s e d c i r c l e s and s o l i dl i n e r . Yield of ~ o c A ~ & ~ I & ~ sesterase D S ~ Z ~a c t i v i t y upon p u r i f i c a t i o n of Q31 granrym 8. Material fractlm Crude hmogenate Percell Sephacryl S3W eluate w a n d eluate Volume - 3onL Z M l%WL Id rate S p e c i f i c esterase Total esterase rate u.4lmlnl20 L 3 2 7W 31W 0.345 24 I200 W ' QP 3 4 5 7 8 9 IO v 23 25 23 8.3 21 22 12 13 3.5 11 12 13 14 15 16 17 6.2 2.8 I8 9.0 6.9 7.6 9.0 *I *, W ' 4 43 31 4 21.5 4 14.4 4 F i w e 5 E l e c t m p m r e s i s on polyacrylamide gels of hnun Q31 CTL g l a n z m B i n 1% UaOWSO4 b r c a p t o e t h m o l . The lane second f p m l e f t represented a portion of a Sephacryl 5 3 ~ f r a c t i o n h i g h i n granzym 8 activity; the l a w second fmn right f r a c t i o n 37 from Fig. 2. The l e f t m s t and r i g h t m s t lanes were lr markers for the two l e f t and two r i g h t IawS. respectively. Human Cytotoxic Lymphocyte Granzyme B 103 K i n e t l cc o n s t a n t sf o r BAADT h y d r o l y s i s a t H7 a Sumnanzed i n Fig. 6 are 1 7 m a w r m n t l of t h e net r a t e of BAAD& i % l y n r , w i t h t h e o r e t i c a l curve (The I o l i d l i n e i n t h e F i g u r e ) f o r Vmax of 6.93 n4lmin and Km of 0 . 1 5 d . N m - l i n e a rl e a s t - s q u a r e ra n a l y s i s of t h e d a t a r h a e d ,V. t o be 6.93+ 1.62 mRlnin.which corresponded t o k c p of 11 5 maleshydrolyzed per rec per male enz- e. and Km t o be 0.15: of 76,000 44.0W M-l 0.06IM With C l t l l y t l Ee f f i c i e n c yk c a t l K m WCr- f 1 2 3 4 I 4t I 5 6 *i 4- 7 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 BENZOYL H H H ILE GLU(0R) ARG GLV LYSLEU D-VAL D-VAl LEU ARG D-ILE ARG PRO D-PRO ARG PHE ARGPRO ARG PHE D-VAL PHE LEU PnE PHE ALA ALA LEU PHE PnE PHE n PYROGLU H succ succ succ MeOSUCC BENZOYL CBZ . ... TYP TYR CBZ succ succ IPP PRO PRO ALA ALA ALA ALA GLUTARYL H succ PHE GLY GLY MeOSUCC MET ALA ALA ALA ALA ACETYL 8DC ALA PRO ALA ALA VAL PRO ALA ALA 8oc succ ALA PRO ALA ALA ACETYL UETPROALA ALA MeOSUCC ASN ALA BDC BOC ALA Boc SER ALA Boc ASP ALA VAL PRO ALA ALA MeOSUCC MeOSUCC 8DC PHE PHE PHE LEU ALA ALA ALA ALA 12 0.7 11 + 9.5 21 f D.7 2.6 + 1.0 16 +-3.3 13 T 3.3 -7.3 + 1.1 -4.6 2.9 -0.1 f 5.5 -13 + 8.1 -128-+ 2.9 -34 *-14 -7.5-: 18 -6.5 + 9.8 -24 1-1.1 -3.9-+ 3.0 -4.2 7 1.6 1.3 i 5 . 2 9.8 5.9 -5.5 + 4 . 9 -16 -'7.5 2.9 + 1.3 6.5 I 5 . 9 -0.3 5.2 9.8 + 5.2 13 -17 8.1 * 12 30 +-I. 9 185-+75 : UET PHF ALA z -21 T 45 -22 7 4.4 -13 f 8.1 0.05 0.15 0.10 BOC-ALA-ALA-ASP-SEA. rnM EQependenceof t h er a t e ' of h y d r o l y s i s of B a A l a A l d S p S B z l by 931 g r a n l y n r B Upon concentration of 8 a A l a A l d r p S B z l . A11dyO were done ~n b u f f e r A a t 21 C w i t h 1.2 0.4 nM g r a n 2 y m 8. The net r a t e of h y d r o l y s i s i s d e f i n e d as t h e Observed r a t e mmnur t h er a t eo f h y d r o l y s i sw i t hs u b s t r a t ea l o n e( n a n - e n z y m l t ? cr a t e ) . The t h e o r e t i c a l curve was Calculated of 6.93 n 4 l m i n .w i t h a M i c h a e l i s f o r a maximal v e l a i t v a t i n f i n i t e s u b s t r a t e c o n c e n t r a t i o n c m s t a n t( c o n c e n t r a t i i of o rh a l f - m a x m a lv e l a i t y ) Of 0 . 1 M . HEPES 1M EDTA, t h e n e t r a t e of {H depenaeny - Y i t h 0 . 1 Rn 8AADT i n D.3M NaCl 0.lM Na BAA01 Ydro Y I l S y 031 granzyme 8 minus thenonemymatic rate between pH 5.5 and 9.5 i s I h a n i n Fig. 1. The pH a t which 031 g r a n z p e B most r a p i d l yh y d r o l y z e d0 . l M BAADT appeared t o be between pH 7 and 1.5. It was n o t e w o r t h yt h a tt h e r e *as n g n i f i c a n t a c t i v i t y It pH6. I n h i b i t i o n of L-91ut~.yl-Z-naphthylanridare - The l n h i b i t i o n d a t a a l l e n b l e d i n T a b l e 5 c l e a r l y c m f i r n e d t h e sequence data I30.331, h i c h r h a e d 031 granzyme B t o be a s e r i n e protease i n h i b i t o r . The lack of p r o t e a r e ,i nt h ea p p r e c i a b l ei n h i b i t i o n by human m-1 r i m - d e p e n d e n c e r e p o r t e d w I t h m-1 DrOteale I n h i b i t o r meant t h a t any translent5 *ere CLnplete i n 10sec. The O l i g q e p t i d e i n h i b i t o r TLCK S h a d a time-dependent i n h i b i t i m of 031 granzyme 8. A l e m i l o g a r i t m i c p l o t of enzymatic r a t e versus t i m e a f t e r TLCK a d d i t l o n rhowed t h a t a t rate t o d e c l i n e t o l l e Of t h e 0.05 q l m L (0.087 M) TLCK t h e t i m e f o r t h e e n z m a t i c d i f f e r e n c e between t h e u n i n h i b i t e d and s t e a d y - s t a t ei n h i b i t e d rate was 270 + 135 SeC. This I n h l b i t i o n of L-glutanryl-2-naphthylanidare a c t i v i t y of human 031 CTL granzyme by s e l e c t e dC m e r c i a l l y - a v a i l a b l ep r o t e a s ei n h i b i t o r s .A r r a y s were d m e with 1 . W M L-glUtMlyl-2-n~phthylamide i n D.3oW NaCl 0 . l W NIHEPES pH 7.0 1 M EDTA, except assays w i t h EDTA and EGTA. Negative I n h i b i t i o n valuesCOTrelpMlded t o S t i m l a t i o n of enzyme a c t i v i t y . Inhibitor 1. Time-independent i n h i b i t o r s A. M a c r a n o l e c u l a r i n h i b i t a s A1 Limabean t r y p s i n i n h l b i t w A2 Soy bean t r y p s i n i n h i b i t o r protease i n h i b i t m A3 Human m] A4 B o v i n e a p r o t i n i n ( T r a l y l o l ) A5 Human a n t i t h r m b i n 111 A6 Human aZ+acroglobulin F i ure 7 Dependence upon pH o f h y d m l y l i l O f BocAl&41&4rpS&,l by 031 granryrae 8 . H y d m l y r i r h e r e done i n b u f f e r A a t 21'C w i t h 0.1Dm4 B 0 ~ A l a A l d ~ l p S 8and ~ 1 U i t h 1.2nM 031 granzmne 8 . and were c o r r e c t e d f o r t h e h y d r o l y l l l i n t h e absence O f e n l y e (nonenzymaticrate) t o g i v e t h e net rate. - H y d m l y s i s of c h m m p h o r i c o l i g o p e p t i d e r The rater Of h y d m l y s i s of 33 a l i g w e p t i d e p - m t r o a m l i d e and D l i g e p e p t l d e t h i o b e n z y l esters by P u r l f i e d 031 g r a n z y m 8 are summarized i n Table 4. The r a t e s were each lerr Than 203: O f t h e r a t e o f BAADT h y d r o l y s i s (CoDpoYnd 301, and molt were not S i g n i f i C m t l y d i f f w e n t fmn zero. Many o ft h es u b s t r a t e s *ere p m r l y s o t u b l e i t h i s was r e f l e c t e d i n n e g a t i v e ratel and largestandarddeviations. 8. 0 1 i g q e p t i d e i n h i b i t o r s 81 A n t l p l i n 82 Chymostatin 83 E l a s t a t i n & 84 Leupeptin 85 P e p s t a t i n 86 PhosphoPmidon 87 ZPCK IN--Cbr-L-Phe-CH2Cl) C. L a mOleCUlar-welght i n h i b i t o r s C1 Benzamidine C2 EDTA C3 EGTA C4 PMSF :: C oI n hc iebni t ri oa nt i o n 50 * 3 52 f 14 85 13 40'19 -3 6 66 2 0.25 mglmt 0.25 mglnrt : 0.01 mg/mL 0.25 qld 5 1 glmL 0701 mg1mt f 0.05 0.05 0.05 0.05 0.03 0.05 0.05 f i rqlk 35 11 * T3 nqlk 1 ' M 875 mglk 65-+ 5 16 f 12 wlk 36 D.lM lnw I n w Inw 2 . Time dependent I n h i b i t o r s D. D l i g w e p t i d e i n h i b i t o r s D l TLCK (N-~-Toryl-L-Lyr-CH2CI) 18 + 42 7 16 mglmt mglk kobrli 0.05 m g i k 40 :20 rec
© Copyright 2025 ExpyDoc