Geometry Worksheet Introduction to Proof Name: Complete each proof by choosing a reason for each statement. 1. Given: RV bisects <SRT; <3 <1 Prove: <3 <2 statements . 1. RV bisects <SRT; <3 <1 1. ______ 2. <1 <2 2. ______ 3. <3 <2 3. ______ 2. reasons . Choose from these reasons: a) Definition of bisector b) Transitive Property c) Given Given: BD = AD and AD + DC = AC Prove: BD + DC = AC statements . 1. BD = AD 1. ______ 2. AD + DC = AC 2. ______ 3. BD + DC = AC 3. ______ reasons . Choose from these reasons: a) Substitution Property b) Given For #3 – 7, choose reasons from the following list for each proof. a) Substitution Property d) Definition of bisector b) Given e) Transitive Property c) Definition of midpoint 3. Given: AH is the bisector of <GAI, <1 <3 Prove: <2 <3 statements . reasons 1. AH is the bisector of <GAI, <1 <3 1. ______ 2. <1 <2 2. ______ 3. <2 <3 3. ______ . (over) 4. Given: AB = 9, BC = 7 and AB + BC = AC Prove: 16 = AC statements . 1. AB = 9, BC = 7 1. ______ 2. AB + BC = AC 2. ______ 3. 9 + 7 = AC 3. ______ 4. 16 = AC 4. ______ 5. reasons . reasons . reasons . Given: NA AM M is the midpoint of AB Prove: NA MB statements . 1. NA AM ; M is the midpoint of AB 1. ______ 2. AM MB 2. ______ 3. NA MB 3. ______ 6. Given: H is the midpoint of GI , JH HI Prove: GH JH statements . 1. H is the midpoint of GI , JH HI 1. ______ 2. GH HI 2. ______ 3. GH JH 3. ______ 7. Given: TU bisects RS , UM MS Prove: RM UM statements . reasons 1. TU bisects RS , UM MS 1. ______ 2. RM MS 2. ______ 3. RM UM 3. ______ . For #8-21, indicate with yes or no whether or not the information can be assumed from the diagram. 8. N, P, and Q are collinear. 9. M is the midpoint of LN . 10. NP PQ 11. <MLP and <PLQ are adjacent angles. 12. LP is greater than MN. 13. <RMN and <NMP form a linear pair. 14. <NLQ <NMP 15. M is between L and N. 16. <RML and <NMP are vertical angles. 17. <NQL is a right angle. 18. LP bisects <MLQ. 19. RP intersects LM 20. LM is less than LN. 21. m<MPQ is greater than m<MPL. use for #8-21
© Copyright 2024 ExpyDoc