Willkommen Welcome Bienvenue Projektvorschlag "non-leaching antimicrobials" Nano Initiative des Bundesministeriums für Verkehr, Innovation und Technologie Workshop "Potenziale der Nanotechnologie für Unternehmen" Dr. Dirk Hegemann (Empa)/ Dr. Gaffar Hossain (V-trion) Non-leaching antimicrobials Goal: To produce non-leaching antimicrobial material through plasma (assisted) nanocoating of antimicrobial substances or catalytically active surfaces www.empa.ch/advancedfibers Non-leaching antimicrobials Approaches 1) Antimicrobial substances (e.g, quaternary ammonium salts or others) will be linked covalently to the plasma nanocoated surface. 2) Generation of metal (oxides) island (with dissimilar metals) over the catalytically active surfaces QAC or other compounds Substrate Plasma nanocoating Metal (Oxides) deposition Non-leaching antimicrobial material 18.12.2014 www.empa.ch/advancedfibers 3 Non-leaching antimicrobials Mode of antimicrobial action Non-leaching antimicrobial repulsion killing 2 Exclusion steric repulsion Electrostatic repulsion Low surface energy www.empa.ch/advancedfibers Biocide releasing 1 Contact-active biocidal Immobilization of antibacterial compounds Grafting onto functionalized surfaces Substrate www.empa.ch/advancedfibers 5 Immobilization of antibacterial compounds Grafting onto functionalized surfaces O Antimicrobial compounds HO O CH3 HO OH Lauryl Gallate (LG) Multifunctional (antimicrobial/ antioxidant/ hydrophobe) Gallate compounds Biocidal polymers with quarternary ammonium groups www.empa.ch/advancedfibers Hematoporphyrin (Photoinduced antimicrobial) Aminolevulinic acid Photofrin Enzyme etc Immobilization of antibacterial compounds Grafting onto functionalized surfaces Substrate e.g. grafting of quaternary ammonium compounds (Qac) onto functionalized surfaces Cell membrane Qac, for example: 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride www.empa.ch/advancedfibers Biocidal action to destry the cell wall 7 Catalytically active surfaces Deposition of dissimilar metals (metal oxides) Generation of reactive oxygen species (ROS) O2• – TiO2 Ag, Au, Pt, Pd, Cu, Fe, Zn… OH• + H+ 2 H + O2 TiOx H 2 O2 4 H• Au islands PET filament O2 Ag H2O → formation of ROS (O2–, OH•, HO2, H2O2 etc.) → antibacterial effect on respiratory system of bacteria www.empa.ch/advancedfibers 8 Catalytically active self-cleaning and antimicrobial surfaces S. Aureus/ P.aeruginosa/ E.Coli Antimicrobial % Viability ROS formation at hv > 290 nm Concentration of nanoparticles (mg/ mL) Self-cleaning 18.12.2014 www.empa.ch/advancedfibers Coffee / Wine Coated CO Untreated Stain decomposition mechanism at hv> 440 0h 8h 24 h 9 Catalytically active self-cleaning and antimicrobial surfaces Antenna effect A _. A h D v D +. Chlorophyll molecules Reaction center (RC) Photosynthesis process Photocatalytic antimicrobial compounds (Hematoporphyrin and photofrin) Photosensitizer (PS) Photocatalytic action PS-Excited state Photo-oxidation 1 Biomimetic process Molecular oxygen Photo-oxidation 2 Molecular oxygen O2 1O 2 H2O2 Hydrophobic pocket Free Oxygen radicals Hosting capacity and Solubilisation of organic dirt Biomolecular oxidation and cellular damage www.empa.ch/advancedfibers
© Copyright 2024 ExpyDoc