金属・量子井戸ヘテロ界面における動的共鳴現象 - 半導体における動的

金属・量子井戸ヘテロ界面における動的共鳴現象
東京大学工学系研究科電気系工学専攻、松井裕章
光励起下で生成される量子井戸内の電子・正孔対(励起子)と、表面プラズモンとの動的相関科学は、高機能な
発光・受光素子及び光電変換材料の開発に向けての基礎科学になる。本研究の目的は、超短波パルス光及び近接
場光を用いた時空間分光を通じて、量子井戸上に微細加工した金属ナノ構造に誘起される局在光に関する諸特性
を解明する。本講演では、量子井戸内に生成される励起子エネルギーのヘテロ界面における金属層の帆表面自由
電子振動によるエネルギー緩和過程を考察する。これは、量子現象と電磁気現象の結合である。
Structure of 4.8 nm-thick SQW and PL quenching
Critical temperature (Tc) for PL quenching effect
Coupling of excitons and surface free electron oscillation
0
-4 Difference PL
DI / I = 1000%
-8
1.8
3
T = 300 K
100K
60K
2.2
2.6
20K
2.2
SQW emission peak energy (eV)
PL quenching ratio (time)
0
-4
Tc = 125 K
-8
-12
0
Tc = 90 K
-4
-12
3.02
LW = 2.3 nm
3.005
10
100
Ag layer
Photon-counting
2.93
LW = 3.2 nm
2.9
Ti: sapphire
E(0) = 2.965 eV
s = 20 meV
2.87
2.79
LW = 4.8 nm
E(0) = 2.808 eV
s = 8.5 meV
0
100
200
Lifetime
Without Ag
With Ag
10 K
t1 = 0.266 ns
t2 = 2.09 ns
t1 = 0.242 ns
t2 = 1.75 ns
75 K
t1 = 0.148 ns
t2 = 0.771 ns
t1 = 0.136 ns
t2 = 0.686 ns
300
Temperature (K)
Temperature (K)
SQW
6.2 nm
2.77
2.73
300
I (300K )
= 2.0%
I (8K )
Lifetime (ns)
Integrated PL intensity (a.u.)
tNR
t PL =
I1t 1 + I 2t 2
I1 + I 2
~
T1.5
1
40
80
1000 / T (K-1)
120
+
t
PL
1
tR
+
tET metal t2
t1
1
t ET -metal
1
hinteq =
t NR
T = 10 K
tPL
0.1 10
=
=
1
C.B.
100
1+
tR
t NR
I(t) = I1*exp(-t/t1) + I2*exp(-t/t2)
Without Ag
With Ag
T = 10 K
T = 75 K
0
1
2
Time (ns)
tNR
Energy Transfer was induced by longer lifetime
(t2) than energy transfer lifetime (t ET metal).
Ag metal nanodots by EB lithography for nano-optics
0.5
Effective lifetime:(tPL)
Without Ag
With Ag
0.3
0.1
10
T = 100 K
× t1
V.B.
Temperature (K)
1
×
tNR
InGaN laser: 403 nm
0
t PL ,metal
tR
1
300
Long radiative lifetime to Ag metal layer
1
t PL
hinteff =
100
200
Temperature (K)
Energy transfer from quantum well to metal
Radiative recombination process in SQW without Ag region
DE = 10. 5 meV
0
Long lifetime (t2): localized states in the SQW
Integrated PL intensity and effective PL lifetime
10
2.73
Selective excitation of the well (2.8 eV)
2.75
-8
3
Difference of lifetime between without and with Ag regions
E(0) = 3.093 eV
s = 29 meV
3.035
2.6
Photon energy (eV)
s = 8.5 meV
Ti: sapphire second harmonic laser (l = 408 nm)
Laser pulse width: 2 ps
Photo-counting system (resolution: 80 ps)
0
-12
2.75
Time-resolved PL response of 4.8 nm-thick SQW
Excitonic localization and quenching temperature
Tc = 140 K
a 2T
s2
T +b
k BT
Correlation of quenching temperature and localization of excitons
Quantum well size and PL quenching effect
-8
E (T ) = E ( 0 ) -
3
Photon energy (eV)
-4
-8
2.77
30K
1.8
DI / I = 0%
1.8
Tc ~ 90 K
-12
10K
0
-4
-8
-4
2.79
40K
Lifetime (ns)
SQW
direction
2.6
200K
150K
PL intensity (a.u.)
Difference
Exciton (e- -h+ pair)
vibrating dipole
2.2
Photon energy (eV)
0
SQW energy (eV)
With Ag layer
PL intensity (a.u.)
Electromagnetic field
Space (t)
0
Without Ag layer
Lifetime (ns)
(SQW surface roughness : 1-1.5 nm)
Ag (silver) metal
300K
T = 10 K
Difference PL intensity (a.u.)
Difference
ZnO Spacer
CdZnO well
ZnO Buffer
HAADF-STEM
Quantum confinement of excitons and the Quenching appearance
PL quenching ratio
PL intensity (a.u.)
t = 4 nm ZnO spacer thickness
1
t ET metal
~ 1 ns
0.1 10
100
Temperature (K)
Conclusion
1. PL quenching effect was observed at low temperatures and
was related to a quantum confinement size.
2. PL quenching was ascribed with a decrease of lifetime, and
energy transfer lifetime to the metal layer was about 1 ns.
3. Metal nanodots with 100 nm scale was successfully fabricated
by EB lithography, which will open dynamic optical
correlation between metal and SQW.
100 nm size; space: 500 nm
200 nm size; space: 500 nm
3