Gaussian Measures and the QM Oscillator Sabrina Gonzalez Pasterski (Dated: April 20, 2014) In this paper, I show how probability densities associated with a Gaussian field can be expressed in terms of the Boltzmann heat kernel. The N 2 calculations are based o↵ of the work of Arthur Ja↵e, while the proof of his postulate for general N is original. In “Fields with a Gaussian Measure,” I found: R QN ⇢t (x) ⌘ xi )dµc i=1 ( (ti ) =p where Cij = C(ti the operator: H0 = 1 e (2⇡)n detC tj ) = 1 2 ✓ 1 > 2x C 1 x 1 m|ti tj | . 2m e 2 d + m2 x2 dx2 (1) Now, consider ◆ m (2) ⇣ m ⌘1/4 ⇡ e mx2 2 1 For N = 1, ⇢t (x) = ⌦0 (x)2 . When N > 1, it is convenient to define C = 2mC so that Cij = e m|ti tj | . Then: ⇢t (x) = (5) Here, I will consider t1 < ... < tN . For N = 2 explicitly inverting ✓ ◆ 1 e m(t2 t1 ) C2 ⌘ (6) e m(t2 t1 ) 1 gives an expression for ⇢ in terms of B: ⇢t1 ,t2 (x1 , x2 ) = ⌦0 (x1 )Bt2 t1 (x1 , x2 )⌦0 (x2 ) N (CN 1) ), leads to an ex(CN1 1 v) µ 1 µ 1 v) (7) 1 A (9) where µ = 1 v > (CN1 1 v). Rather than inverting CN 1 , my expression for ⇢N in terms of ⇢N 1 will only need the product (CN1 1 v). Because the inverse exists, it is equivalent to finding ⇠ such that v = CN 1 ⇠. Since the last column of CN 1 is (e m(tN 1 t1 ) ...1), I find that: (3) For t > 0, the Boltzmann integral kernel gives the evolution: Z 1 e tH0 f (x) = Bt (x, x0 )f (x0 )dx0 (4) >C 1x m N/2 e mx p ⇡ detC where v > = (e m(tN t1 ) ...e m(tN tN pression for the inverse: 0 (C 1 v)(C 1 v)> CN1 1 + N 1 µ N 1 1 C ⌘@ 1 > µ which can be thought of as the Hamiltonian for the simple harmonic oscillator with position coordinate scaled to have unit mass, and frequency ! = m. The spectrum is mZ+ and the ground state is given by: ⌦0 (x) = I can now find an expression for general N using induction. Writing CN in blocks: ◆ ✓ CN 1 v CN ⌘ (8) v> 1 (CN1 1 v)j = e m(tN tN 1) j,N (10) 1 which gives: µ = 1 e 2m(tN tN 1 ) 1 1 2 = x> N 1 CN 1 xN 1 + µ [xN + e m(tN tN 1 ) 2xN xN 1 e ] 1 x> N CN x N 2m(tN tN 1) x2N (11) In terms of ⇢N ⇢N = m ⇡ = ⇢N = ⇢N 1 2 1, m ⇡ one thus finds: N 1 ⇢tN ,tN 1 ⌦0 (xN 1 2 e mx> N p 1 CN x 1 N detCN (xN , xN 1 B tN 1) 1 1 1 1 )⌦0 (xN tN e (x> C m p 1 1 (xN 1) 1 x) µ 2 1 , xN )⌦0 (xN ) (12) The expressions for N = 1 and N = 2 are both consistent with the following expression for general N : ⇢N = ⌦0 (x1 )Bt2 t1 (x1 , x2 )Bt3 t2 (x2 , x3 )... ...BtN tN 1 (xN 1 , xN )⌦0 (xN ) where t1 < ... < tN . (13) 1
© Copyright 2025 ExpyDoc