International Journal of Contemporary Mathematical Sciences Vol. 9, 2014, no. 13, 615 - 623 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2014.4993 A Generalization of Hermite Polynomials Ghulam Farid Global Institute Lahore New Garden Town, Lahore, Pakistan G. M. Habibullah Global Institute Lahore New Garden Town, Lahore, Pakistan Sundas Shahzeen Global Institute Lahore New Garden Town, Lahore, Pakistan Copyright © 2014 Ghulam Farid, G. M. Habibullah and Sundas Shahzeen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we introduce a simple set H np ( x) , which is a generalized form of Hermite polynomial H n ( x) . We establish series form, basic recurrence relations, the pure recurrence relation and Rodrigues type formula for the generalized polynomial. Mathematics Subject Classification: 33C45, 11B37, 05A15 Keywords: Hermite polynomial, generalized Hermite polynomial, recurrence relation, pure recurrence relation, Rodrigues formula 616 Ghulam Farid, G. M. Habibullah and Sundas Shahzeen 1 Introduction Hermite polynomials are one of the most significant classical orthogonal polynomials arisen from the expressions of the form exp(2 xt t 2 ) H n ( x) n 0 tn . n! (1.1) Large dedicated literature is available to study the orthogonal polynomials. We refer some of them beginning with [1], followed by [4], [7], [9] and [5]. We also refer some recent work regarding properties, extensions, generalizations and applications of Hermite and the related orthogonal polynomials; e.g. [2], [8], [6], [10], [3] and [4]. Analogous to Lemma 11, pp 57 of [1], it is easy to see for each p Z n p A(k , n) A(k , n pk ). n 0 k 0 (1.2) n 0 k 0 For each p 1 , if we define H ((pp)1) n as p 1 p tn exp (t ) p k x k H ((pp)1) n ( x) , n! k 0 k n 0 (1.3) then H np ( x) is a simple set. One may observe that for p 2 , the relations (1.1) and (1.3) are identical. That is, H n(2) ( x) H n ( x) , which is the classical Hermite polynomial. 2 Main Results We discus some results of the generalized Hermite polynomials generally and for some particular values of the parameter p . A generalization of Hermite polynomials 617 Theorem 2.1: The polynomial H n(3) ( x) can be written as n k 2 k 3 j 2 3 3 n 4 k 6 j n n x x 4 6 1 n 2 H n(3) ( x) ( 1) 2 k! k 0 j 0 ( n 2k 3 j 1) 2 3 3 j! j . (1.4) Proof: For p 3 , using Lemma 11, pp 57 of [1] and (1.2) it follows from (1.3) that tn (3) H ( x ) exp(3x 2t 3xt 2 t 3 ) 2n n! n 0 n 2 n 0 k 0 (3x)k (3x 2 ) n 2 k n t 3 t e k !(n 2k )! n 2 n 3 1 (3x) k (3x 2 ) n 3 j 2 k tn. n 0 k 0 j 0 j ! k !( n 3 j 2k )! Hence by comparison, we have n 2 k 3 j k 3 2 3 n n x x 2 3 1 2 (3) H 2 n ( x) n ! (n 2k 3 j )! k! k 0 j 0 n 2 We find the result (1.4) by replacing n by 3 3 j! j . and observe that H n(3) ( x) is a polynomial of degree precisely n in x . Theorem 2.2: The Polynomial H n(4) ( x) can be written as n n n H (4) n 6 9 12 n ( x) ( 1) y, 3 k 0 j 0 i 0 n 2 k 3 j 4 i k j i 4 2 4 4 43 x n 6 k 9 j 12i ) x x 1 2 3 4 . y n k! j! i! ( 2k 3 j 4i 1) 3 (1.5) 618 Ghulam Farid, G. M. Habibullah and Sundas Shahzeen Proof: For p 4 , it follows from (1.3) that H3(4)n ( x) n 0 tn exp(4 x3t ) exp(6 x 2t 2 ) exp(4 xt 3 ) exp(t 4 ). n! Now, using Lemma 11, pp 57 of [1] and (1.2), it follows from (1.3) that n2k k 4 3 4 2 x n x 2 1 2 tn, 3 2 2 exp(4 x t ) exp(6 x t ) k !(n 2k )! n 0 k 0 e4 x t e 6 x t e 4 xt 3 2 2 3 j 4 n x 2 3 j! k 0 n 0 j 0 j n2k k 4 3 4 2 x x 1 2 tn k !(n 2k )! n 3 j 2 k k 4 4 3 4 2 n n x x x 2 3 3 1 2 tn, j! k !(n 3 j 2k )! k 0 n 0 j 0 and thus e 4 x3t 6 x 2t 2 e e 4 xt 3 t 4 e n n 2 3 s, k 0 j 0 i n 4 i 3 j 2 k j k 4 4 4 4 3 4 2 n t x x x 4 4 3 1 2 t n 4i . s i! j! k !(n 4i 3 j 2k )! n 0 i 0 So, we get H n 0 (4) 3n ( x) tn u tn, n ! n 0 i j n 4 i 3 j 2 k k 4 4 4 3 4 2 n n n x x x 2 3 4 4 3 1 2 . u i! j! k !(n 4i 3 j 2k )! k 0 j 0 i 0 A generalization of Hermite polynomials 619 Hence, by comparison, we obtain n 2 k 3 j 4 i k j i 4 3 4 2 4 4 n n n x x x 2 3 4 1 2 3 4 . (4) H 3n ( x) n ! k! j! i! k 0 j 0 i 0 ( n 2k 3 j 4i )! We obtain the result (1.5) by replacing n by n and observe that H n(4) ( x) is a 3 polynomial of degree precisely n in x . Theorem 2.3: It follows by induction that n n 2 3 n p i1 0 i2 0 i p1 0 H ((pp)1) n ( x) n ! ... y, n 2 i1 3i2 ... pi p1 i1 p p 1 p p 2 p p 3 2 p 1 p x x x (1) 1 p 2 3 ... y (n 2i1 3i2 ... pi p 1 )! i1 ! i2 ! i p 1 ! i i p1 and hence H n( p ) ( x) n ! n n 2( p 1) 3( p 1) i1 0 n i2 0 n p( p 1) ... i p1 0 z1 z2 , 2( p 1) i1 3( p 1) i2 ... p ( p 1) i p1 p p 1 p 1 x 1 z1 , n ( 2i1 3i2 ... pi p 1 1)! p 1 i1 i2 p p 2 p p 3 p 1 p x x (1) 2 p 3 ... z2 i1 ! i2 ! i p 1 ! i p1 . Theorem 2.4: The polynomial H 2(3)n ( x) can be written as H 2(3)n ( x) (1)n exp( x3 ) dn exp( x3 ) . dx n (1.6) , 620 Ghulam Farid, G. M. Habibullah and Sundas Shahzeen Proof: Let f ( x, t ) H 2(3)n ( x) n 0 tn , n! then it follows by Maclaurin’s theorem that n H 2(3)n ( x) n exp(3x 2t 3xt 2 t 3 ) . t t 0 Since exp(3x 2t 3xt 2 t 3 ) exp( x3 ) exp(( x t )3 ) , t t using w x t , we have d exp(3x 2t 3xt 2 t 3 ) exp( x3 ) exp(w3 ) . t dw Eventually, we obtain (1.6). Similarly, the polynomial H 3(4) n ( x) can be written as dn H ( x) (1) exp( x ) n exp( x 4 ) . dx (4) 3n n 4 (1.7) And by induction or otherwise following the same procedure of that of the above theorem we have Theorem 2.5: H ((pp)1) n ( x) (1)n exp( x p ) dn exp( x p ) . dx n p 1 p exp (t ) p k x k f ( x, t ), k 0 k then it follows by Maclaurin’s theorem that tn n tn ( p) H ( x ) f ( x , t ) , ( p 1) n n ! n0 t n n! n 0 t 0 Proof: Let implying that H ((pp)1) n ( x) p 1 p n p k k exp (t ) x . n t k 0 k t 0 (1.8) A generalization of Hermite polynomials 621 Since p 1 p p k k p p exp (t ) x exp( x ) exp(( x t ) , k t t k 0 using w x t , we have p 1 p d pk k p exp (t ) x exp( x ) exp(w p ) . k t dw k 0 Eventually, we obtain (1.8). Theorem 2.6: The generalized polynomial H 2(3)n ( x) satisfies the recurrence relations (i) H (3) ( x) 3x 2 H (3) ( x) H (3) ( x), (ii) H 2n (3) 2n ( x) 6nx H 2( n 1) 2n (3) 2( n 1) ( x) 3n(n 1) H 2((3)n2) ( x), (iii) H 2((3)n1) ( x) 3x 2 H 2(3)n ( x) 6nx H 2((3)n1) ( x) 3n(n 1) H 2((3)n2) ( x). (1.9) (1.10) (1.11) Proof: H 2(3)n ( x) . n! n 0 Then differentiating partially with respect to x and t , we have n (3)* Let F ( x, t ) exp(3x 2t 3xt 2 t 3 ) H 2(3)* n ( x )t , H 2 n ( x) n Fx ( x, t ) (6 xt 3t 2 ) exp(3x 2t 3xt 2 t 3 ) H 2(3)* n ( x) t , (1.12) n 0 n 1 Ft ( x, t ) (3x 2 6 xt 3t 2 ) exp(3x 2t 3xt 2 t 3 ) n H 2(3)* . n ( x) t n 0 Since Fx ( x, t ) Ft ( x, t ) 3x 2 F ( x, t ), we have H n 0 (3)* 2n n 0 n 0 n 1 n ( x) t n n H 2(3)* 3x 2 H 2(3)* n ( x)t n ( x)t , implying that H (3)* 2n 2 (3)* ( x) (n 1) H 2((3)* n 1) ( x) 3 x H 2 n ( x), and ultimately we obtain (1.9). (1.13) 622 Ghulam Farid, G. M. Habibullah and Sundas Shahzeen From relation (1.12) we have (3) H 2(3)n ( x) n 1 H 2(3)n ( x) n 2 H 2 n ( x) n 6x t 3 t t . n! n! n! n 0 n 0 n 0 As H 0(3) ( x) H 0(3) ( x) H 2(3) ( x) 0, we obtain 6x H 2((3)n 1) ( x) t 3 n H 2((3)n 2) ( x) (n 1)! n 2 ( n 2)! and eventually we get (1.10). n2 t n n2 H (3) 2n ( x) n! tn, Relation (1.9) and (1.10) yield (1.11), which is pure recurrence relation satisfied by the polynomial H 2(3)n ( x) . References [1] E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960. [2] G. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 2004. [3] G. Farid and G. M. Habibullah, An extension of Hermite polynomials, int. j. of Contemp. Math. Sciences, 9 (2014), 455-459. [4] G. Farid and G. M. Habibullah, Extensions of Legendre polynomials, int. j. of Contemp. Math. Sciences, 9 (2014), 545-551. [5] J. L. Lopez, Hermite Polynomial in Asymptotic Representations of Generalized Bernoulli, Euler, Bessel and Buchholz Polynomials, J. Math. Anal. Appl., 239 (1999), 457-477. [6] M. Powierska, On the rate of convergence of some orthogonal polynomial expansions, J. Inequal. Pure Appl. Math., 9 (2008), 9-11. [7] M. Rosler, Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators, Commun. Math. Phys., 192 (1998), 519-541. [8] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k -symbol, Divulg. Mat., 15 (2007), 179-192. A generalization of Hermite polynomials 623 [9] S. B. Trickovic and M. S. Stankovic, On the orthogonality of classical orthogonal polynomials, Integral Transform. Spec. Funct., 14(2003), 129138. [10] S. Mubeen and G. M. Habibullah, An integral representation of some k hypergeometric functions, Int. Math. Forum, 7 (2012), 203-207. Received: September 21, 2014; Published: October 31, 2014
© Copyright 2024 ExpyDoc