Double Field Theory and Non-Geometric Backgrounds: Dimensional Reduction and Cosmological Applications DIETER LÜST (LMU, MPI) String-Pheno Conference 2014: ICTP Trieste, July 11, 2014 Donnerstag, 10. Juli 14 1 Double Field Theory and Non-Geometric Backgrounds: Dimensional Reduction and Cosmological Applications DIETER LÜST (LMU, MPI) O. Hohm, D.L., B. Zwiebach, arXiv:1309.2977; F. Hassler, D.L., arXiv:1401.5068; F. Hassler, D.L., S. Massai, arXiv:1405.2325 String-Pheno Conference 2014: ICTP Trieste, July 11, 2014 Donnerstag, 10. Juli 14 1 Outline: I) Introduction II) Double Field Theory and Dimensional Reduction on Non-geometric Backgrounds III) De Sitter and Inflation 2 Donnerstag, 10. Juli 14 I) Introduction Non-geometric backgrounds are generic within the landscape of string „compactifications“. Several interesting features: ● They are only consistent in string theory. ● Make use of string symmetries, T-duality T-folds, ● Left-right asymmetric spaces Asymmetric orbifolds (Kawai, Lewellen, Tye, 1986; Lerche, D.L. Schellekens, 1986, Antoniadis, Bachas, Kounnas, 1987; Narain, Sarmadi,Vafa, 1987; Ibanez, Nilles, Quevedo, 1987; ......, Faraggi, Rizos, Sonmez, 2014) ● Effective gauged supergravity (Dall‘Agata,Villadoro, Zwirner, 2009; Nicolai, Samtleben,2001; Dibitetto, Linares, Roest, 2010; ...) ● Are related to non-commutative/non-associative geometry (Blumenhagen, Plauschinn; Lüst, 2010; Blumenhagen, Deser, Lüst, Rennecke, Pluaschin, 2011; Condeescu, Florakis, Lüst; 2012, Andriot, Larfors, Lüst, Patalong, 2012)) ● They can be potentially used for the construction of de Sitter vacua and inflation (Hertzberg, Kachru, Taylor, Tegmark, 2007; Caviezel, Köerber, Körs, D.L., Wrase, 2008; Danielsson, Haque, Shiu, Underwood,Van Riet, 2009; Daniellson, Haque, Koerber, Shiu,Van Riet, 2011; Dall‘Agata, Inverso, 2012;Blabäck, Danielsson, Dibitetto, 2013; Damian, Diaz-Barron, Loaiza-Brito, Sabido, 2013) Donnerstag, 10. Juli 14 SUGRA CY Flux comp. DFT Non-Geometric spaces Non-geometric spaces Donnerstag, 10. Juli 14 Double Field Theory II) Non-geometry & double field theory 5 Donnerstag, 10. Juli 14 II) Non-geometry & double field theory Closed string background fields: Gij , Bij , 5 Donnerstag, 10. Juli 14 II) Non-geometry & double field theory Closed string background fields: Gij , Bij , Doubling of closed string coordinates and momenta: ˜i, X i) - Coordinates: O(D,D) vector X M = (X - Momenta: O(D,D) vector winding 5 Donnerstag, 10. Juli 14 pM = (˜ pi , pi ) ← T-duality → momentum II) Non-geometry & double field theory Closed string background fields: Gij , Bij , Doubling of closed string coordinates and momenta: ˜i, X i) - Coordinates: O(D,D) vector X M = (X pM = (˜ pi , pi ) - Momenta: O(D,D) vector winding Generalized metric: HM N = 5 Donnerstag, 10. Juli 14 ✓ ← T-duality → ij G Bik Gkj momentum ik Gij G Bkj Bik Gkl Blj ◆ II) Non-geometry & double field theory Closed string background fields: Gij , Bij , Doubling of closed string coordinates and momenta: ˜i, X i) - Coordinates: O(D,D) vector X M = (X pM = (˜ pi , pi ) - Momenta: O(D,D) vector winding Generalized metric: HM N = ✓ ← T-duality → ij G Bik Gkj momentum ik Gij G Bkj Bik Gkl Blj T-duality - O(D,D) transformations: HM N ! They contain: Donnerstag, 10. Juli 14 P ⇤M Q HP Q ⇤N Bij ! Bij + 2⇡⇤ij , 5 , ⇤ 2 O(D, D) R ! L2s /R ◆ Non-geometric backgrounds & non-geometric fluxes: 6 Donnerstag, 10. Juli 14 Non-geometric backgrounds & non-geometric fluxes: - Non-geometric Q-fluxes: spaces that are locally still Riemannian manifolds but not anymore globally. (Hellerman, McGreevy, Williams (2002); C. Hull (2004); Shelton, Taylor, Wecht (2005); Dabholkar, Hull, 2005) Transition functions between two coordinate patches are given in terms of O(D,D) T-duality transformations: C. Hull (2004) Di↵(MD ) ! O(D, D) 6 Donnerstag, 10. Juli 14 Non-geometric backgrounds & non-geometric fluxes: - Non-geometric Q-fluxes: spaces that are locally still Riemannian manifolds but not anymore globally. (Hellerman, McGreevy, Williams (2002); C. Hull (2004); Shelton, Taylor, Wecht (2005); Dabholkar, Hull, 2005) Transition functions between two coordinate patches are given in terms of O(D,D) T-duality transformations: C. Hull (2004) Di↵(MD ) ! O(D, D) - Non-geometric R-fluxes: spaces that are even locally not anymore manifolds. 6 Donnerstag, 10. Juli 14 Example: Three-dimensional flux backgrounds: Fibrations: 2-dim. torus that varies over a circle: 2 TX 1 ,X 2 ,! M 3 ,! 1 SX 3 The fibration is specified by its monodromy properties. Metric, B-field of T : HM N (X ) 2 3 S1 O(2,2) monodromy: 1 HM N (X 3 + 2⇡) = ⇤O(2,2) HP Q (X 3 ) ⇤O(2,2) 7 Donnerstag, 10. Juli 14 Example: Three-dimensional flux backgrounds: Fibrations: 2-dim. torus that varies over a circle: 2 TX 1 ,X 2 ,! M 3 1 SX 3 ,! The fibration is specified by its monodromy properties. Metric, B-field of T : HM N (X ) 2 3 S1 O(2,2) monodromy: Complex structure 1 HM N (X 3 + 2⇡) = ⇤O(2,2) HP Q (X 3 ) ⇤O(2,2) ⌧ of T 2 : Kähler parameter ⇢ of T 2 : Donnerstag, 10. Juli 14 a⌧ (X 3 ) + b ⌧ (X + 2⇡) = c⌧ (X 3 ) + d 3 0 3 0 a ⇢(X ) + b ⇢(X 3 + 2⇡) = 0 c ⇢(X 3 ) + d0 7 Torus 8 Donnerstag, 10. Juli 14 Torus with non-constant B-field (H-flux), B-field is patched together by a B-field (gauge) transformation: B ! B + 2⇡H 9 Donnerstag, 10. Juli 14 Non geometric torus, metric is patched together by a T-duality transformation: Gij ! Gij 10 Donnerstag, 10. Juli 14 Non geometric torus, metric is patched together by a T-duality transformation: Gij ! Gij 11 Donnerstag, 10. Juli 14 3-dimensional fibration: ⌧ (X + 2⇡) = 3 1 ⌧ (X 3 ) 2 TX 1X2 1 SX 3 S1 Twisted torus with f-flux 12 Donnerstag, 10. Juli 14 3-dimensional fibration: 1 ⇢(X 3 ) ⇢(X + 2⇡) = 3 2 TX 1X2 S1 1 SX 3 Non-geometric space with Q-flux 13 Donnerstag, 10. Juli 14 (i) (Non-)geometric backgrounds with parabolic monodromy and single 3-form fluxes: Chain of four T-dual spaces: Flat torus with constant H-flux Tx1 Twisted torus with f-flux Tx2 Nongeometric space with Q-flux Tx3 Nongeometric space with R-flux 14 Donnerstag, 10. Juli 14 (i) (Non-)geometric backgrounds with parabolic monodromy and single 3-form fluxes: Chain of four T-dual spaces: Flat torus with constant H-flux Tx1 Twisted torus with f-flux Tx2 Nongeometric space with Q-flux Tx3 Nongeometric space with R-flux Linear B-field 14 Donnerstag, 10. Juli 14 (i) (Non-)geometric backgrounds with parabolic monodromy and single 3-form fluxes: Chain of four T-dual spaces: Flat torus with constant H-flux Tx1 Twisted torus with f-flux Tx2 Nongeometric space with Q-flux Tx3 Nongeometric space with R-flux Linear B-field Linear metric (Nilmanifold) 14 Donnerstag, 10. Juli 14 (i) (Non-)geometric backgrounds with parabolic monodromy and single 3-form fluxes: Chain of four T-dual spaces: Flat torus with constant H-flux Tx1 Linear B-field Twisted torus with f-flux Tx2 Nongeometric space with Q-flux Tx3 Nongeometric space with R-flux non-linear metric and B-field Linear metric (Nilmanifold) 14 Donnerstag, 10. Juli 14 (i) (Non-)geometric backgrounds with parabolic monodromy and single 3-form fluxes: Chain of four T-dual spaces: Flat torus with constant H-flux Tx1 Linear B-field Twisted torus with f-flux Tx2 Nongeometric space with Q-flux Tx3 Nongeometric space with R-flux non-linear metric and B-field Linear metric (Nilmanifold) no local metric and B-field 14 Donnerstag, 10. Juli 14 (ii) (Non-)geometric backgrounds with elliptic monodromy and multiple, (non)-geometric fluxes. They can be described in terms of twisted tori and (a)symmetric freely acting orbifolds. A. Dabholkar, C. Hull (2002, 2005) C. Hull; R. Read-Edwards (2005, 2006, 2007, 2009) D. Lüst, JHEP 1012 (2011) 063, arXiv:1010.1361, C. Condeescu, I. Florakis, D. Lüst, JHEP 1204 (2012), 121, arXiv:1202.6366 C. Condeescu, I. Florakis, C. Kounnas, D.Lüst, arXiv:1307.0999 In general not T-dual to a geometric space! Only consistent in string theory, respectively in DFT. The fibre torus depends on the third coordinate in a more complicate way. 17 Donnerstag, 10. Juli 14 Double field theory action: W. Siegel (1993); C. Hull, B. Zwiebach (2009); C. Hull, O. Hohm, B. Zwiebach (2010,...) 16 Donnerstag, 10. Juli 14 Double field theory action: W. Siegel (1993); C. Hull, B. Zwiebach (2009); C. Hull, O. Hohm, B. Zwiebach (2010,...) • O(D,D) invariant effective string action containing momentum and winding coordinates at the same time: Z 2D 2 0 SDFT = d X e R X M = (˜ xm , xm ) R = 4HM N @M 0 @N 0 @M @N HM N 1 MN + H @M HKL @N HKL 8 4HM N @M 0 @N + 4@M HM N @N 1 MN KL H @ H @L HM K N 2 16 Donnerstag, 10. Juli 14 0 0 Double field theory action: W. Siegel (1993); C. Hull, B. Zwiebach (2009); C. Hull, O. Hohm, B. Zwiebach (2010,...) • O(D,D) invariant effective string action containing momentum and winding coordinates at the same time: Z 2D 2 0 SDFT = d X e R X M = (˜ xm , xm ) R = 4HM N @M 0 @N 0 @M @N HM N 1 MN + H @M HKL @N HKL 8 4HM N @M 0 @N 0 + 4@M HM N @N 0 1 MN KL H @ H @L HM K N 2 • Covariant fluxes of DFT:(Geissbuhler, Marques, Nunez, Penas; Aldazabal, Marques, Nunez) FABC = D[A EB M EC]M , D = E A A M @ M . Comprise all fluxes (Q,f,Q,R) into one covariant expression: Fabc = Habc , F a bc = F a bc , 16 Donnerstag, 10. Juli 14 Fc ab = Qc ab , F abc = Rabc DFT action in flux formulation: SDFT = Z ⇣1 0 0 0 2d AA0 dX e FA FA0 S + FABC FA0 B 0 C 0 S AA ⌘ BB ⌘ CC 4 1 FABC F ABC 6 1 AA0 BB 0 CC 0 ⌘ S S S 12 FA F A (Looks similar to scalar potential in gauged SUGRA.) 17 Donnerstag, 10. Juli 14 DFT action in flux formulation: SDFT = Z ⇣1 0 0 0 2d AA0 dX e FA FA0 S + FABC FA0 B 0 C 0 S AA ⌘ BB ⌘ CC 4 1 FABC F ABC 6 1 AA0 BB 0 CC 0 ⌘ S S S 12 FA F A (Looks similar to scalar potential in gauged SUGRA.) • Strong constraint (string level matching condition): (CFT origin of the strong constraint: A. Betz, R. Blumenhagen, D. Lüst, F. Rennecke, arXiv:1402.1686) @M @ · = 0 , M @M f @ g = DA f D g = 0 M A Functions depend only on one kind of coordinates. The strong constraint defines a D-dim. hypersurface (brane) in 2D-dim. double geometry. 17 Donnerstag, 10. Juli 14 Implementations of the strong constraint: (i) DFT on spaces satisfying the strong constraint (SC) Rewriting of SUGRA, geometric spaces (ii) DFT on spaces with „mild violation“ of the SC Non-geometric spaces (Q-flux) (iii) DFT on spaces with „strong violation“ of the SC Very non-geometric spaces (R-flux) 18 Donnerstag, 10. Juli 14 Dimensional reduction of double field theory: Generalized Scherk-Schwarz compactifications matching amplitudes SUGRA without fluxes simplification (truncation) string theory D wi th flu xe s (o nly su d SUGRA embedding tensor 19 Donnerstag, 10. Juli 14 bs e t) gauged SUGRA Dimensional reduction of double field theory: Generalized Scherk-Schwarz compactifications matching amplitudes D Double Field Theory @˜i · = 0 SUGRA without fluxes simplification (truncation) string theory SFT SC wi th flu xe s (o n ly su d SUGRA embedding tensor 20 Donnerstag, 10. Juli 14 bs et ) gauged SUGRA Dimensional reduction of double field theory: Generalized Scherk-Schwarz compactifications matching amplitudes D Double Field Theory @˜i · = 0 SC SUGRA without fluxes simplification (truncation) string theory SFT wi th Violation of SC Non-geometric space flu xe s (o nly su t) d SUGRA embedding tensor 21 Donnerstag, 10. Juli 14 bs e gauged SUGRA Dimensional reduction of double field theory: Generalized Scherk-Schwarz compactifications matching amplitudes D Double Field Theory @˜i · = 0 SUGRA without fluxes simplification (truncation) string theory SFT wi th SC flu xe s( Violation of SC Non-geometric space on ly su bs et ) d SUGRA embedding tensor 22 Donnerstag, 10. Juli 14 gauged SUGRA e.o.m. Vacuum Dimensional reduction of double field theory: Generalized Scherk-Schwarz compactifications matching amplitudes D Violation of SC Non-geometric space SC th flu xe s( on ly su d SUGRA embedding tensor bs et ) gauged SUGRA 23 Donnerstag, 10. Juli 14 Asymmetric orbifold CFT uplift wi Double Field Theory @˜i · = 0 SUGRA without fluxes simplification (truncation) string theory SFT e.o.m. Vacuum Dimensional reduction of double field theory: G. Aldazabal, W. Baron, D. Marques, C. Nunez, arXiv:1109.0290; D. Berman, E. Musaev, D. Thompson, arXiv:1208.0020; D. Berman, K. Lee, arXiv:1305.2747; O. Hohm, D. Lüst, B. Zwiebach, arXiv:1309.2977; F. Hassler, D. Lüst, arXiv:1401.5068. • Consistent DFT solutions: RM N = 0 • 2(D-d) linear independent Killing vectors: LKIJ HM N = 0 • DFT and Scherk-Schwarz ansatz gives rise to effective theory in D-d dimensions: Se↵ = Z ⇣ 1 dx ge R + 4@µ @ Hµ⌫⇢ H µ⌫⇢ 12 ⌘ 1 1 N HM N F M µ⌫ Fµ⌫ + Dµ HM N Dµ HM N V 4 8 (D d) p 2 µ 24 Donnerstag, 10. Juli 14 • Effective scalar potential: 1 KL 1 IJ F I F J K L H + FIKM FJLN HIJ HKL HM N 4 12 V = • RM N = 0 V =0 and K Minkowski vacua: MN V = =0 HM N This leads to additional conditions on the fluxes FIKM . 25 Donnerstag, 10. Juli 14 The corresponding backgrounds are in general nongeometric and go beyond dimensional reduction of SUGRA. 26 Donnerstag, 10. Juli 14 The corresponding backgrounds are in general nongeometric and go beyond dimensional reduction of SUGRA. (i) Mild violation of SC: • Killing vectors violate the SC. • Patching of coordinate charts correspond to generalized coordinate transformations that violate the SC. 26 Donnerstag, 10. Juli 14 The corresponding backgrounds are in general nongeometric and go beyond dimensional reduction of SUGRA. (i) Mild violation of SC: • Killing vectors violate the SC. • Patching of coordinate charts correspond to generalized coordinate transformations that violate the SC. (ii) Strong violation of SC: • Background fields violate the SC. However the fluxes have to obey the closure constraint consistent gauge algebra in the effective theory. M. Grana, D. Marques, arXiv:1201.2924 26 Donnerstag, 10. Juli 14 SUGRA CY Flux comp. T F D DFT without the SC non-geometric spaces 27 Donnerstag, 10. Juli 14 C S + Simplest non-trivial solutions: d=3 dim. backgrounds: 2 TX 1X2 S1 1 SX 3 Donnerstag, 10. Juli 14 Simplest non-trivial solutions: d=3 dim. backgrounds: 2 TX 1X2 S1 1 SX 3 Parabolic background spaces: Single fluxes: 1 12 123 H123 or f23 or Q3 or R MN R = 0. These backgrounds do not satisfy - CFT: beta-functions are non-vanishing at quadratic order in fluxes. - Effective scalar potential: no Minkowski minima ( Donnerstag, 10. Juli 14 AdS) Elliptic background spaces: Multiple fluxes: These backgrounds do satisfy RM N = 0 . 29 Donnerstag, 10. Juli 14 Elliptic background spaces: Multiple fluxes: These backgrounds do satisfy RM N = 0 . • Single elliptic geometric space (Solvmanifold): 2 f13 = 1 f23 =f R orbifold. Symmetric ZL 4 ⇥ Z4 29 Donnerstag, 10. Juli 14 Elliptic background spaces: Multiple fluxes: These backgrounds do satisfy RM N = 0 . • Single elliptic geometric space (Solvmanifold): 2 f13 = 1 f23 =f R orbifold. Symmetric ZL 4 ⇥ Z4 • Single elliptic T-dual, non-geometric space: 12 H123 = Q3 = H R orbifold. Asymmetric ZL 4 ⇥ Z4 29 Donnerstag, 10. Juli 14 Elliptic background spaces: Multiple fluxes: These backgrounds do satisfy RM N = 0 . • Single elliptic geometric space (Solvmanifold): 2 f13 = 1 f23 =f R orbifold. Symmetric ZL 4 ⇥ Z4 • Single elliptic T-dual, non-geometric space: 12 H123 = Q3 = H R orbifold. Asymmetric ZL 4 ⇥ Z4 • Double elliptic, genuinely non-geometric space: H123 = =H, = L Asymmetric Z4 orbifold. 12 Q3 2 f13 29 Donnerstag, 10. Juli 14 1 f23 =f E.g. double elliptic background: ⌧ (x3 ) = ⇢(x3 ) = =) ⌧0 cos(f x3 ) + sin(f x3 ) , cos(f x3 ) ⌧0 sin(f x3 ) ⇢0 cos(Hx3 ) + sin(Hx3 ) , cos(Hx3 ) ⇢0 sin(Hx3 ) ⌧ (2⇡) = 1 , ⌧ (0) 30 Donnerstag, 10. Juli 14 1 f 2 + Z, 4 1 H 2 + Z. 4 ⇢(2⇡) = 1 ⇢(0) E.g. double elliptic background: ⌧ (x3 ) = ⇢(x3 ) = =) ⌧0 cos(f x3 ) + sin(f x3 ) , cos(f x3 ) ⌧0 sin(f x3 ) ⇢0 cos(Hx3 ) + sin(Hx3 ) , cos(Hx3 ) ⇢0 sin(Hx3 ) ⌧ (2⇡) = 1 , ⌧ (0) 30 Donnerstag, 10. Juli 14 Background 1 f2 + Z , strong satisfies 4 1constraint H2 ⇢(2⇡) = 4 + Z. 1 ⇢(0) E.g. double elliptic background: ⌧ (x3 ) = ⇢(x3 ) = =) ⌧0 cos(f x3 ) + sin(f x3 ) , cos(f x3 ) ⌧0 sin(f x3 ) ⇢0 cos(Hx3 ) + sin(Hx3 ) , cos(Hx3 ) ⇢0 sin(Hx3 ) ⌧ (2⇡) = 1 , ⌧ (0) Background 1 f2 + Z , strong satisfies 4 1constraint H2 ⇢(2⇡) = 4 + Z. 1 ⇢(0) Patching is generated by generalized diffeomorphism: 30 Donnerstag, 10. Juli 14 E.g. double elliptic background: ⌧ (x3 ) = ⇢(x3 ) = =) ⌧0 cos(f x3 ) + sin(f x3 ) , cos(f x3 ) ⌧0 sin(f x3 ) ⇢0 cos(Hx3 ) + sin(Hx3 ) , cos(Hx3 ) ⇢0 sin(Hx3 ) ⌧ (2⇡) = 1 , ⌧ (0) Background 1 f2 + Z , strong satisfies 4 1constraint H2 ⇢(2⇡) = 4 + Z. 1 ⇢(0) Patching is generated by generalized diffeomorphism: 30 Donnerstag, 10. Juli 14 E.g. double elliptic background: ⌧ (x3 ) = ⇢(x3 ) = =) ⌧0 cos(f x3 ) + sin(f x3 ) , cos(f x3 ) ⌧0 sin(f x3 ) ⇢0 cos(Hx3 ) + sin(Hx3 ) , cos(Hx3 ) ⇢0 sin(Hx3 ) 1 , ⌧ (0) ⌧ (2⇡) = Background 1 f2 + Z , strong satisfies 4 1constraint H2 ⇢(2⇡) = 4 + Z. 1 ⇢(0) Patching is generated by generalized diffeomorphism: x3 ! x3 + 2⇡ ) x ˜01 = x ˜2 , x ˜02 = x1 , x01 = x2 , x02 = x ˜1 . 30 Donnerstag, 10. Juli 14 E.g. double elliptic background: ⌧ (x3 ) = ⇢(x3 ) = =) ⌧0 cos(f x3 ) + sin(f x3 ) , cos(f x3 ) ⌧0 sin(f x3 ) ⇢0 cos(Hx3 ) + sin(Hx3 ) , cos(Hx3 ) ⇢0 sin(Hx3 ) 1 , ⌧ (0) ⌧ (2⇡) = Background 1 f2 + Z , strong satisfies 4 1constraint H2 ⇢(2⇡) = 4 + Z. 1 ⇢(0) Patching is generated by generalized diffeomorphism: Patching does x3 ! x3 + 2⇡ ) x ˜01 = x ˜2 , x ˜02 = x1 , x01 = x2 , x02 = x ˜1 . 30 Donnerstag, 10. Juli 14 not satisfy strong constraint E.g. double elliptic background: ⌧ (x3 ) = ⇢(x3 ) = =) ⌧0 cos(f x3 ) + sin(f x3 ) , cos(f x3 ) ⌧0 sin(f x3 ) ⇢0 cos(Hx3 ) + sin(Hx3 ) , cos(Hx3 ) ⇢0 sin(Hx3 ) 1 , ⌧ (0) ⌧ (2⇡) = Background 1 f2 + Z , strong satisfies 4 1constraint H2 ⇢(2⇡) = 4 + Z. 1 ⇢(0) Patching is generated by generalized diffeomorphism: Patching does x3 ! x3 + 2⇡ ) x ˜01 = x ˜2 , x ˜02 = x1 , x01 = x2 , x02 = x ˜1 . not satisfy strong constraint Corresponding Killing vectors of background: 0 1 B0 B B0 ˆ J K Iˆ = B B0 B @0 0 Donnerstag, 10. Juli 14 0 1 0 0 0 0 0 1 3 2 (Hx 1 0 0 0 + fx ˜ ) 3 0 + fx ˜2 ) 0 1 0 0 1 2 2 (Hx 30 0 + Hx ˜3 ) 0 0 1 0 1 3 2 (f x 1 2 2 (f x 1 0 + Hx ˜2 )C C C 0 C C 0 C A 0 1 E.g. double elliptic background: ⌧ (x3 ) = ⇢(x3 ) = =) ⌧0 cos(f x3 ) + sin(f x3 ) , cos(f x3 ) ⌧0 sin(f x3 ) ⇢0 cos(Hx3 ) + sin(Hx3 ) , cos(Hx3 ) ⇢0 sin(Hx3 ) 1 , ⌧ (0) ⌧ (2⇡) = Background 1 f2 + Z , strong satisfies 4 1constraint H2 ⇢(2⇡) = 4 + Z. 1 ⇢(0) Patching is generated by generalized diffeomorphism: Patching does x3 ! x3 + 2⇡ ) x ˜01 = x ˜2 , x ˜02 = x1 , x01 = x2 , x02 = x ˜1 . not satisfy strong constraint Corresponding Killing vectors of background: 0 1 B0 B B0 ˆ J K Iˆ = B B0 B @0 0 Donnerstag, 10. Juli 14 0 1 0 0 0 0 0 1 3 2 (Hx 1 0 0 0 + fx ˜ ) 3 0 0do Killing vectors 1 1 3 3 2 ˜ ) 2 (f x + H x ˜2 )C 2 (f x + H x C C 0 not satisfy0 strong constraint. C C 0 0 C However their algebra A 1 0 0 closes! 1 0 + fx ˜2 ) 0 1 0 0 1 2 2 (Hx 1 30 ● There situations, where the strong constraint even for the background can be violated. - This seems to be the case for certain very asymmetric orbifolds. C. Condeescu, I. Florakis, C. Kounnas, D.Lüst, arXiv:1307.0999 ⌧0 cos(f4 x3 + f2 x ˜3 ) + sin(f4 x3 + f2 x ˜3 ) ⌧ (x3 , x ˜3 ) = , cos(f4 x3 + f2 x ˜3 ) ⌧0 sin(f4 x3 + f2 x ˜3 ) ⇢0 cos(g4 x3 + g2 x ˜3 ) + sin(g4 x3 + g2 x ˜3 ) ⇢(x3 , x ˜3 ) = , cos(g4 x3 + g2 x ˜3 ) ⇢0 sin(g4 x3 + g2 x ˜3 ) Fluxes: Parameter f4 f2 g4 g2 1 f4 , g4 2 + Z 8 1 f2 , g2 2 + Z 4 Fluxes f, f˜ ˜ Q, Q H, Q f˜, R R Asymmetric ZL ⇥ Z 4 2 orbifold with H, f ,Q,R-fluxes. This (partially?) solves a so far existing puzzle between effective SUGRA and uplift/string compactification. 31 Donnerstag, 10. Juli 14 III) De Sitter and Inflation 32 Donnerstag, 10. Juli 14 F. Hassler, D. Lüst, S. Massai, arXiv:1405.2325 III) De Sitter and Inflation F. Hassler, D. Lüst, S. Massai, arXiv:1405.2325 Effective scalar potential of double elliptic backgrounds: 1 f12 + 2f1 f2 (⌧R2 ⌧I2 ) + f22 |⌧ |4 H 2 + 2HQ(⇢2R ⇢2I ) + Q2 |⇢|4 + V (⌧, ⇢) = 2 R 2⌧I2 2⇢2I 32 Donnerstag, 10. Juli 14 0 III) De Sitter and Inflation F. Hassler, D. Lüst, S. Massai, arXiv:1405.2325 Effective scalar potential of double elliptic backgrounds: 1 f12 + 2f1 f2 (⌧R2 ⌧I2 ) + f22 |⌧ |4 H 2 + 2HQ(⇢2R ⇢2I ) + Q2 |⇢|4 + V (⌧, ⇢) = 2 R 2⌧I2 2⇢2I The potential is positive semi-definite. No up-lift is needed! 32 Donnerstag, 10. Juli 14 0 III) De Sitter and Inflation F. Hassler, D. Lüst, S. Massai, arXiv:1405.2325 Effective scalar potential of double elliptic backgrounds: 1 f12 + 2f1 f2 (⌧R2 ⌧I2 ) + f22 |⌧ |4 H 2 + 2HQ(⇢2R ⇢2I ) + Q2 |⇢|4 + V (⌧, ⇢) = 2 R 2⌧I2 2⇢2I 0 The potential is positive semi-definite. No up-lift is needed! Vacuum structure: • Minkowski vacua: ⇢?R = 0, e.g. ⇢?I = s HQ > 0 H , Q Vmin = 0 H = Q = 1/4 Asymmetric 32 Donnerstag, 10. Juli 14 L Z4 orbifold. HQ < 0 H ? 2 ? 2 (⇢R ) + (⇢I ) = , Q • de Sitter vacua: Vmin = However here the radius R is not stabilized. 33 Donnerstag, 10. Juli 14 4HQ > 0 HQ < 0 H ? 2 ? 2 (⇢R ) + (⇢I ) = , Q • de Sitter vacua: Vmin = 4HQ > 0 However here the radius R is not stabilized. Another option: SO(2,2) gauging H2 V (⇢, ⌧ ) = 2 1 + 2(⇢2R 2⇢I ⇢2I ) + |⇢| 4 H2 H2 2 2 + (1 + |⇢| )(1 + |⌧ | ) + 2 1 + 2(⌧R2 ⇢I ⌧ I 2⌧I ⇢ = ⌧ = i with Vmin = 4H ? ? ⌧I2 ) + |⌧ |4 2 All moduli ⌧ and ⇢ have positive mass square. 33 Donnerstag, 10. Juli 14 Inflation from non-geometric backgrounds: There are some attractive features for inflation: 34 Donnerstag, 10. Juli 14 Inflation from non-geometric backgrounds: There are some attractive features for inflation: • The potentials are positive with quadratic and quartic couplings that depend on the (non)-geometric fluxes. No up-lift is needed! One needs to tune fluxes to obtain slow roll inflation. ( Orbifolds with high order of twist!) 34 Donnerstag, 10. Juli 14 Inflation from non-geometric backgrounds: There are some attractive features for inflation: • The potentials are positive with quadratic and quartic couplings that depend on the (non)-geometric fluxes. No up-lift is needed! One needs to tune fluxes to obtain slow roll inflation. ( Orbifolds with high order of twist!) • The non-trivial monodromies allow for enlarged field (McAllsiter, Silverstein, Westphal, 2008) range of the inflaton field. Realization of monodromy inflation in order to obtain a visible tensor to scalar ratio (gravitational waves). 34 Donnerstag, 10. Juli 14 Enlarged field range for parabolic monodromy ⇢ ! ⇢ + 1 or ⌧ ! ⌧ + 1 : ·, fl ... ... i ≠ 32 ≠ 12 1 2 3 2 Infinite field range for ⌧R or ⇢R . 35 Donnerstag, 10. Juli 14 Enlarged field range for elliptic Z4 monodromy 1 1 ⇢! or ⌧ ! : ⇢ ⌧ ·, fl i ≠ 12 1 2 Infinite field range for combinations of ⌧R and ⌧I or combinations of ⇢R and ⇢I . 36 Donnerstag, 10. Juli 14 Enlarged field range for elliptic Z6 monodromy ⇢! 1 +1 ⇢ or ⌧ ! 1 +1 : ⌧ ·, fl i ≠ 12 1 2 3 2 Infinite field range for combinations of ⌧R and ⌧I or combinations of ⇢R and ⇢I . 37 Donnerstag, 10. Juli 14 Simple elliptic model for non-geometric inflation: Expect fluxes 1 H, Q ⇠ N Kinetic energy: Inflaton field: Lkin 1 = 2 (@⇢R )2 + (@⇢I )2 4⇢I ⇢R = 2⇢I Inflaton potential: V ( , ⇢I ) = V0 (⇢I ) + m (⇢I ) 2 V0 (⇢I ) = H2 2HQ⇢2I + Q2 ⇢4I , 2⇢2I + (⇢I ) m2 (⇢I ) = 4HQ + 4Q2 ⇢2I , 38 Donnerstag, 10. Juli 14 2 4 (⇢I ) = 8Q2 ⇢2I Minimization with respect to ⇢I : ) V0 = 0 Inflaton mass and self-coupling: m = 4HQ 2 ✓ ◆ 1 ? 2 + ⇢I M s , ? ⇢I ? 3 2 (⇢ 2 2 I) gs MP 2 = m 1 + (⇢?I )2 Small 1 2 ? = 2 M s ⇢I ) gs ? ⇢ small value for I . 39 Donnerstag, 10. Juli 14 2 (MP = ? 8HQ⇢I Slow roll inflation with 60 e-foldings and ns ⇠ 0.967 , ns = 1 MP2 ✏= 2 m ' 6 ⇥ 10 6 ✓ @ V V MP , r ⇠ 0.133 (BICEP2) 6✏ + 2⌘ , ◆2 2 0 ⌘= , 1/4 V0 H ' Q ' 10 0 r = 16✏ ' 10 5 , MP2 2 @ V V ! ' 15MP MP ) ? ⇢I 10 2 Need very small fluxes (large monodromy N ' 105 ) and sub-stringy value for the volume of the fibre. 40 Donnerstag, 10. Juli 14 IV) Summary 41 Donnerstag, 10. Juli 14 IV) Summary ● DFT allows for consistent reduction on non-geometric backgrounds that go beyond SUGRA and also beyond generalized geometry. 41 Donnerstag, 10. Juli 14 IV) Summary ● DFT allows for consistent reduction on non-geometric backgrounds that go beyond SUGRA and also beyond generalized geometry. ● Non-geometric backgrounds posses some attractive (generic) features for string cosmology: - Uplift to Minkowski or de Sitter - Elliptic monodromy of finite order Finite enlargement of field range for inflaton Suppressed masses and couplings for inflaton 41 Donnerstag, 10. Juli 14 IV) Summary ● DFT allows for consistent reduction on non-geometric backgrounds that go beyond SUGRA and also beyond generalized geometry. ● Non-geometric backgrounds posses some attractive (generic) features for string cosmology: - Uplift to Minkowski or de Sitter - Elliptic monodromy of finite order Finite enlargement of field range for inflaton Suppressed masses and couplings for inflaton ● Particle physics model building and full moduli stabilization on non-geometric backgrounds still needs to be further developed. 41 Donnerstag, 10. Juli 14 IV) Summary ● DFT allows for consistent reduction on non-geometric backgrounds that go beyond SUGRA and also beyond generalized geometry. ● Non-geometric backgrounds posses some attractive (generic) features for string cosmology: - Uplift to Minkowski or de Sitter - Elliptic monodromy of finite order Finite enlargement of field range for inflaton Suppressed masses and couplings for inflaton ● Particle physics model building and full moduli stabilization on non-geometric backgrounds still needs to be further developed. Thank you very much! Donnerstag, 10. Juli 14 41
© Copyright 2024 ExpyDoc