Download PDF - String Phenomenology 2014

Double Field Theory and
Non-Geometric Backgrounds:
Dimensional Reduction and
Cosmological Applications
DIETER LÜST (LMU, MPI)
String-Pheno Conference 2014: ICTP Trieste, July 11, 2014
Donnerstag, 10. Juli 14
1
Double Field Theory and
Non-Geometric Backgrounds:
Dimensional Reduction and
Cosmological Applications
DIETER LÜST (LMU, MPI)
O. Hohm, D.L., B. Zwiebach, arXiv:1309.2977;
F. Hassler, D.L., arXiv:1401.5068;
F. Hassler, D.L., S. Massai, arXiv:1405.2325
String-Pheno Conference 2014: ICTP Trieste, July 11, 2014
Donnerstag, 10. Juli 14
1
Outline:
I) Introduction
II) Double Field Theory and Dimensional
Reduction on Non-geometric Backgrounds
III) De Sitter and Inflation
2
Donnerstag, 10. Juli 14
I) Introduction
Non-geometric backgrounds are generic within the
landscape of string „compactifications“.
Several interesting features:
● They are only consistent in string theory.
● Make use of string symmetries, T-duality
T-folds,
● Left-right asymmetric spaces
Asymmetric orbifolds
(Kawai, Lewellen, Tye, 1986; Lerche, D.L. Schellekens, 1986, Antoniadis, Bachas, Kounnas, 1987; Narain, Sarmadi,Vafa, 1987;
Ibanez, Nilles, Quevedo, 1987; ......, Faraggi, Rizos, Sonmez, 2014)
● Effective gauged supergravity
(Dall‘Agata,Villadoro, Zwirner, 2009; Nicolai, Samtleben,2001; Dibitetto, Linares, Roest, 2010; ...)
● Are related to non-commutative/non-associative geometry
(Blumenhagen, Plauschinn; Lüst, 2010; Blumenhagen, Deser, Lüst, Rennecke, Pluaschin, 2011;
Condeescu, Florakis, Lüst; 2012, Andriot, Larfors, Lüst, Patalong, 2012))
● They can be potentially used for the construction
of de Sitter vacua and inflation
(Hertzberg, Kachru, Taylor, Tegmark, 2007; Caviezel, Köerber, Körs, D.L., Wrase, 2008;
Danielsson, Haque, Shiu, Underwood,Van Riet, 2009; Daniellson, Haque, Koerber, Shiu,Van Riet, 2011;
Dall‘Agata, Inverso, 2012;Blabäck, Danielsson, Dibitetto, 2013; Damian, Diaz-Barron, Loaiza-Brito, Sabido, 2013)
Donnerstag, 10. Juli 14
SUGRA
CY
Flux comp.
DFT
Non-Geometric spaces
Non-geometric spaces
Donnerstag, 10. Juli 14
Double Field Theory
II) Non-geometry & double field theory
5
Donnerstag, 10. Juli 14
II) Non-geometry & double field theory
Closed string background fields: Gij , Bij ,
5
Donnerstag, 10. Juli 14
II) Non-geometry & double field theory
Closed string background fields: Gij , Bij ,
Doubling of closed string coordinates and momenta:
˜i, X i)
- Coordinates: O(D,D) vector
X M = (X
- Momenta: O(D,D) vector
winding
5
Donnerstag, 10. Juli 14
pM = (˜
pi , pi )
← T-duality →
momentum
II) Non-geometry & double field theory
Closed string background fields: Gij , Bij ,
Doubling of closed string coordinates and momenta:
˜i, X i)
- Coordinates: O(D,D) vector
X M = (X
pM = (˜
pi , pi )
- Momenta: O(D,D) vector
winding
Generalized metric: HM N =
5
Donnerstag, 10. Juli 14
✓
← T-duality →
ij
G
Bik Gkj
momentum
ik
Gij
G Bkj
Bik Gkl Blj
◆
II) Non-geometry & double field theory
Closed string background fields: Gij , Bij ,
Doubling of closed string coordinates and momenta:
˜i, X i)
- Coordinates: O(D,D) vector
X M = (X
pM = (˜
pi , pi )
- Momenta: O(D,D) vector
winding
Generalized metric: HM N =
✓
← T-duality →
ij
G
Bik Gkj
momentum
ik
Gij
G Bkj
Bik Gkl Blj
T-duality - O(D,D) transformations:
HM N !
They contain:
Donnerstag, 10. Juli 14
P
⇤M
Q
HP Q ⇤N
Bij ! Bij + 2⇡⇤ij ,
5
, ⇤ 2 O(D, D)
R ! L2s /R
◆
Non-geometric backgrounds & non-geometric fluxes:
6
Donnerstag, 10. Juli 14
Non-geometric backgrounds & non-geometric fluxes:
- Non-geometric Q-fluxes: spaces that are locally still
Riemannian manifolds but not anymore globally.
(Hellerman, McGreevy, Williams (2002); C. Hull (2004); Shelton, Taylor, Wecht (2005); Dabholkar, Hull, 2005)
Transition functions between two coordinate patches are
given in terms of O(D,D) T-duality transformations:
C. Hull (2004)
Di↵(MD )
!
O(D, D)
6
Donnerstag, 10. Juli 14
Non-geometric backgrounds & non-geometric fluxes:
- Non-geometric Q-fluxes: spaces that are locally still
Riemannian manifolds but not anymore globally.
(Hellerman, McGreevy, Williams (2002); C. Hull (2004); Shelton, Taylor, Wecht (2005); Dabholkar, Hull, 2005)
Transition functions between two coordinate patches are
given in terms of O(D,D) T-duality transformations:
C. Hull (2004)
Di↵(MD )
!
O(D, D)
- Non-geometric R-fluxes: spaces that are even
locally not anymore manifolds.
6
Donnerstag, 10. Juli 14
Example: Three-dimensional flux backgrounds:
Fibrations: 2-dim. torus that varies over a circle:
2
TX 1 ,X 2
,! M
3
,!
1
SX 3
The fibration is specified by its monodromy properties.
Metric, B-field of T : HM N (X )
2
3
S1
O(2,2) monodromy:
1
HM N (X 3 + 2⇡) = ⇤O(2,2) HP Q (X 3 ) ⇤O(2,2)
7
Donnerstag, 10. Juli 14
Example: Three-dimensional flux backgrounds:
Fibrations: 2-dim. torus that varies over a circle:
2
TX 1 ,X 2
,! M
3
1
SX 3
,!
The fibration is specified by its monodromy properties.
Metric, B-field of T : HM N (X )
2
3
S1
O(2,2) monodromy:
Complex structure
1
HM N (X 3 + 2⇡) = ⇤O(2,2) HP Q (X 3 ) ⇤O(2,2)
⌧ of T 2 :
Kähler parameter ⇢ of T 2 :
Donnerstag, 10. Juli 14
a⌧ (X 3 ) + b
⌧ (X + 2⇡) =
c⌧ (X 3 ) + d
3
0
3
0
a
⇢(X
)
+
b
⇢(X 3 + 2⇡) = 0
c ⇢(X 3 ) + d0
7
Torus
8
Donnerstag, 10. Juli 14
Torus with non-constant B-field (H-flux),
B-field is patched together by a B-field
(gauge) transformation: B ! B + 2⇡H
9
Donnerstag, 10. Juli 14
Non geometric torus, metric is patched
together by a T-duality transformation: Gij ! Gij
10
Donnerstag, 10. Juli 14
Non geometric torus, metric is patched
together by a T-duality transformation: Gij ! Gij
11
Donnerstag, 10. Juli 14
3-dimensional fibration:
⌧ (X + 2⇡) =
3
1
⌧ (X 3 )
2
TX
1X2
1
SX
3
S1
Twisted torus with f-flux
12
Donnerstag, 10. Juli 14
3-dimensional fibration:
1
⇢(X 3 )
⇢(X + 2⇡) =
3
2
TX
1X2
S1
1
SX
3
Non-geometric space with Q-flux
13
Donnerstag, 10. Juli 14
(i) (Non-)geometric backgrounds with parabolic
monodromy and single 3-form fluxes:
Chain of four T-dual spaces:
Flat torus
with constant
H-flux
Tx1
Twisted
torus with
f-flux
Tx2
Nongeometric
space with
Q-flux
Tx3
Nongeometric
space with
R-flux
14
Donnerstag, 10. Juli 14
(i) (Non-)geometric backgrounds with parabolic
monodromy and single 3-form fluxes:
Chain of four T-dual spaces:
Flat torus
with constant
H-flux
Tx1
Twisted
torus with
f-flux
Tx2
Nongeometric
space with
Q-flux
Tx3
Nongeometric
space with
R-flux
Linear B-field
14
Donnerstag, 10. Juli 14
(i) (Non-)geometric backgrounds with parabolic
monodromy and single 3-form fluxes:
Chain of four T-dual spaces:
Flat torus
with constant
H-flux
Tx1
Twisted
torus with
f-flux
Tx2
Nongeometric
space with
Q-flux
Tx3
Nongeometric
space with
R-flux
Linear B-field
Linear metric
(Nilmanifold)
14
Donnerstag, 10. Juli 14
(i) (Non-)geometric backgrounds with parabolic
monodromy and single 3-form fluxes:
Chain of four T-dual spaces:
Flat torus
with constant
H-flux
Tx1
Linear B-field
Twisted
torus with
f-flux
Tx2
Nongeometric
space with
Q-flux
Tx3
Nongeometric
space with
R-flux
non-linear metric and B-field
Linear metric
(Nilmanifold)
14
Donnerstag, 10. Juli 14
(i) (Non-)geometric backgrounds with parabolic
monodromy and single 3-form fluxes:
Chain of four T-dual spaces:
Flat torus
with constant
H-flux
Tx1
Linear B-field
Twisted
torus with
f-flux
Tx2
Nongeometric
space with
Q-flux
Tx3
Nongeometric
space with
R-flux
non-linear metric and B-field
Linear metric
(Nilmanifold)
no local metric and B-field
14
Donnerstag, 10. Juli 14
(ii) (Non-)geometric backgrounds with elliptic
monodromy and multiple, (non)-geometric fluxes.
They can be described in terms of twisted tori and
(a)symmetric freely acting orbifolds.
A. Dabholkar, C. Hull (2002, 2005)
C. Hull; R. Read-Edwards (2005, 2006, 2007, 2009)
D. Lüst, JHEP 1012 (2011) 063, arXiv:1010.1361,
C. Condeescu, I. Florakis, D. Lüst, JHEP 1204 (2012), 121, arXiv:1202.6366
C. Condeescu, I. Florakis, C. Kounnas, D.Lüst, arXiv:1307.0999
In general not T-dual to a geometric space!
Only consistent in string theory, respectively in DFT.
The fibre torus depends on the third coordinate in a more
complicate way.
17
Donnerstag, 10. Juli 14
Double field theory action:
W. Siegel (1993); C. Hull, B. Zwiebach (2009); C. Hull, O. Hohm, B. Zwiebach (2010,...)
16
Donnerstag, 10. Juli 14
Double field theory action:
W. Siegel (1993); C. Hull, B. Zwiebach (2009); C. Hull, O. Hohm, B. Zwiebach (2010,...)
• O(D,D) invariant effective string action containing
momentum and winding coordinates at the same time:
Z
2D
2 0
SDFT = d X e
R
X M = (˜
xm , xm )
R = 4HM N @M 0 @N 0 @M @N HM N
1 MN
+ H
@M HKL @N HKL
8
4HM N @M 0 @N
+ 4@M HM N @N
1 MN
KL
H
@
H
@L HM K
N
2
16
Donnerstag, 10. Juli 14
0
0
Double field theory action:
W. Siegel (1993); C. Hull, B. Zwiebach (2009); C. Hull, O. Hohm, B. Zwiebach (2010,...)
• O(D,D) invariant effective string action containing
momentum and winding coordinates at the same time:
Z
2D
2 0
SDFT = d X e
R
X M = (˜
xm , xm )
R = 4HM N @M 0 @N 0 @M @N HM N
1 MN
+ H
@M HKL @N HKL
8
4HM N @M 0 @N
0
+ 4@M HM N @N
0
1 MN
KL
H
@
H
@L HM K
N
2
• Covariant fluxes of DFT:(Geissbuhler, Marques, Nunez, Penas; Aldazabal, Marques, Nunez)
FABC = D[A EB
M
EC]M , D = E
A
A
M
@
M
.
Comprise all fluxes (Q,f,Q,R) into one covariant expression:
Fabc = Habc ,
F a bc = F a bc ,
16
Donnerstag, 10. Juli 14
Fc ab = Qc ab ,
F abc = Rabc
DFT action in flux formulation:
SDFT
=
Z

⇣1
0
0
0
2d
AA0
dX e
FA FA0 S
+ FABC FA0 B 0 C 0
S AA ⌘ BB ⌘ CC
4
1
FABC F ABC
6
1 AA0 BB 0 CC 0 ⌘
S
S
S
12
FA F A
(Looks similar to scalar potential in gauged SUGRA.)
17
Donnerstag, 10. Juli 14
DFT action in flux formulation:
SDFT
=
Z

⇣1
0
0
0
2d
AA0
dX e
FA FA0 S
+ FABC FA0 B 0 C 0
S AA ⌘ BB ⌘ CC
4
1
FABC F ABC
6
1 AA0 BB 0 CC 0 ⌘
S
S
S
12
FA F A
(Looks similar to scalar potential in gauged SUGRA.)
• Strong constraint (string level matching condition):
(CFT origin of the strong constraint: A. Betz, R. Blumenhagen, D. Lüst, F. Rennecke, arXiv:1402.1686)
@M @ · = 0 ,
M
@M f @ g = DA f D g = 0
M
A
Functions depend only on one kind of coordinates.
The strong constraint defines a D-dim. hypersurface (brane) in
2D-dim. double geometry.
17
Donnerstag, 10. Juli 14
Implementations of the strong constraint:
(i) DFT on spaces satisfying the strong constraint (SC)
Rewriting of SUGRA, geometric spaces
(ii) DFT on spaces with „mild violation“ of the SC
Non-geometric spaces (Q-flux)
(iii) DFT on spaces with „strong violation“ of the SC
Very non-geometric spaces (R-flux)
18
Donnerstag, 10. Juli 14
Dimensional reduction of double field theory:
Generalized Scherk-Schwarz compactifications
matching
amplitudes
SUGRA
without fluxes
simplification (truncation)
string theory
D
wi
th
flu
xe
s
(o
nly
su
d SUGRA
embedding
tensor
19
Donnerstag, 10. Juli 14
bs
e
t)
gauged
SUGRA
Dimensional reduction of double field theory:
Generalized Scherk-Schwarz compactifications
matching
amplitudes
D
Double Field Theory
@˜i · = 0
SUGRA
without fluxes
simplification (truncation)
string theory
SFT
SC
wi
th
flu
xe
s
(o
n
ly
su
d SUGRA
embedding
tensor
20
Donnerstag, 10. Juli 14
bs
et
)
gauged
SUGRA
Dimensional reduction of double field theory:
Generalized Scherk-Schwarz compactifications
matching
amplitudes
D
Double Field Theory
@˜i · = 0
SC
SUGRA
without fluxes
simplification (truncation)
string theory
SFT
wi
th
Violation of SC
Non-geometric space
flu
xe
s
(o
nly
su
t)
d SUGRA
embedding
tensor
21
Donnerstag, 10. Juli 14
bs
e
gauged
SUGRA
Dimensional reduction of double field theory:
Generalized Scherk-Schwarz compactifications
matching
amplitudes
D
Double Field Theory
@˜i · = 0
SUGRA
without fluxes
simplification (truncation)
string theory
SFT
wi
th
SC
flu
xe
s(
Violation of SC
Non-geometric space
on
ly
su
bs
et
)
d SUGRA
embedding
tensor
22
Donnerstag, 10. Juli 14
gauged
SUGRA
e.o.m.
Vacuum
Dimensional reduction of double field theory:
Generalized Scherk-Schwarz compactifications
matching
amplitudes
D
Violation of SC
Non-geometric space
SC
th
flu
xe
s(
on
ly
su
d SUGRA
embedding
tensor
bs
et
)
gauged
SUGRA
23
Donnerstag, 10. Juli 14
Asymmetric
orbifold CFT
uplift
wi
Double Field Theory
@˜i · = 0
SUGRA
without fluxes
simplification (truncation)
string theory
SFT
e.o.m.
Vacuum
Dimensional reduction of double field theory:
G. Aldazabal, W. Baron, D. Marques, C. Nunez, arXiv:1109.0290;
D. Berman, E. Musaev, D. Thompson, arXiv:1208.0020;
D. Berman, K. Lee, arXiv:1305.2747;
O. Hohm, D. Lüst, B. Zwiebach, arXiv:1309.2977;
F. Hassler, D. Lüst, arXiv:1401.5068.
• Consistent DFT solutions: RM N = 0
• 2(D-d) linear independent Killing vectors:
LKIJ HM N = 0
• DFT and Scherk-Schwarz ansatz gives rise to effective
theory in D-d dimensions:
Se↵ =
Z
⇣
1
dx
ge
R + 4@µ @
Hµ⌫⇢ H µ⌫⇢
12
⌘
1
1
N
HM N F M µ⌫ Fµ⌫
+ Dµ HM N Dµ HM N V
4
8
(D
d) p
2
µ
24
Donnerstag, 10. Juli 14
• Effective scalar potential:
1 KL
1
IJ
F I F J K L H + FIKM FJLN HIJ HKL HM N
4
12
V =
•
RM N = 0
V =0
and
K
Minkowski vacua:
MN
V
=
=0
HM N
This leads to additional conditions on the fluxes FIKM .
25
Donnerstag, 10. Juli 14
The corresponding backgrounds are in general nongeometric and go beyond dimensional reduction of SUGRA.
26
Donnerstag, 10. Juli 14
The corresponding backgrounds are in general nongeometric and go beyond dimensional reduction of SUGRA.
(i) Mild violation of SC:
• Killing vectors violate the SC.
• Patching of coordinate charts correspond to generalized
coordinate transformations that violate the SC.
26
Donnerstag, 10. Juli 14
The corresponding backgrounds are in general nongeometric and go beyond dimensional reduction of SUGRA.
(i) Mild violation of SC:
• Killing vectors violate the SC.
• Patching of coordinate charts correspond to generalized
coordinate transformations that violate the SC.
(ii) Strong violation of SC:
• Background fields violate the SC.
However the fluxes have to obey the closure constraint consistent gauge algebra in the effective theory.
M. Grana, D. Marques, arXiv:1201.2924
26
Donnerstag, 10. Juli 14
SUGRA
CY
Flux comp.
T
F
D
DFT without the SC non-geometric spaces
27
Donnerstag, 10. Juli 14
C
S
+
Simplest non-trivial solutions: d=3 dim. backgrounds:
2
TX
1X2
S1
1
SX
3
Donnerstag, 10. Juli 14
Simplest non-trivial solutions: d=3 dim. backgrounds:
2
TX
1X2
S1
1
SX
3
Parabolic background spaces:
Single fluxes:
1
12
123
H123 or f23
or Q3 or R
MN
R
= 0.
These backgrounds do not satisfy
- CFT: beta-functions are non-vanishing at
quadratic order in fluxes.
- Effective scalar potential: no Minkowski minima (
Donnerstag, 10. Juli 14
AdS)
Elliptic background spaces:
Multiple fluxes:
These backgrounds do satisfy RM N = 0 .
29
Donnerstag, 10. Juli 14
Elliptic background spaces:
Multiple fluxes:
These backgrounds do satisfy RM N = 0 .
• Single elliptic geometric space (Solvmanifold):
2
f13
=
1
f23
=f
R orbifold.
Symmetric ZL
4 ⇥ Z4
29
Donnerstag, 10. Juli 14
Elliptic background spaces:
Multiple fluxes:
These backgrounds do satisfy RM N = 0 .
• Single elliptic geometric space (Solvmanifold):
2
f13
=
1
f23
=f
R orbifold.
Symmetric ZL
4 ⇥ Z4
• Single elliptic T-dual, non-geometric space:
12
H123 = Q3 = H
R orbifold.
Asymmetric ZL
4 ⇥ Z4
29
Donnerstag, 10. Juli 14
Elliptic background spaces:
Multiple fluxes:
These backgrounds do satisfy RM N = 0 .
• Single elliptic geometric space (Solvmanifold):
2
f13
=
1
f23
=f
R orbifold.
Symmetric ZL
4 ⇥ Z4
• Single elliptic T-dual, non-geometric space:
12
H123 = Q3 = H
R orbifold.
Asymmetric ZL
4 ⇥ Z4
• Double elliptic, genuinely non-geometric space:
H123 =
=H,
=
L
Asymmetric Z4 orbifold.
12
Q3
2
f13
29
Donnerstag, 10. Juli 14
1
f23
=f
E.g. double elliptic background:
⌧ (x3 )
=
⇢(x3 )
=
=)
⌧0 cos(f x3 ) + sin(f x3 )
,
cos(f x3 ) ⌧0 sin(f x3 )
⇢0 cos(Hx3 ) + sin(Hx3 )
,
cos(Hx3 ) ⇢0 sin(Hx3 )
⌧ (2⇡) =
1
,
⌧ (0)
30
Donnerstag, 10. Juli 14
1
f 2 + Z,
4
1
H 2 + Z.
4
⇢(2⇡) =
1
⇢(0)
E.g. double elliptic background:
⌧ (x3 )
=
⇢(x3 )
=
=)
⌧0 cos(f x3 ) + sin(f x3 )
,
cos(f x3 ) ⌧0 sin(f x3 )
⇢0 cos(Hx3 ) + sin(Hx3 )
,
cos(Hx3 ) ⇢0 sin(Hx3 )
⌧ (2⇡) =
1
,
⌧ (0)
30
Donnerstag, 10. Juli 14
Background
1
f2
+ Z , strong
satisfies
4
1constraint
H2
⇢(2⇡) =
4
+ Z.
1
⇢(0)
E.g. double elliptic background:
⌧ (x3 )
=
⇢(x3 )
=
=)
⌧0 cos(f x3 ) + sin(f x3 )
,
cos(f x3 ) ⌧0 sin(f x3 )
⇢0 cos(Hx3 ) + sin(Hx3 )
,
cos(Hx3 ) ⇢0 sin(Hx3 )
⌧ (2⇡) =
1
,
⌧ (0)
Background
1
f2
+ Z , strong
satisfies
4
1constraint
H2
⇢(2⇡) =
4
+ Z.
1
⇢(0)
Patching is generated by generalized diffeomorphism:
30
Donnerstag, 10. Juli 14
E.g. double elliptic background:
⌧ (x3 )
=
⇢(x3 )
=
=)
⌧0 cos(f x3 ) + sin(f x3 )
,
cos(f x3 ) ⌧0 sin(f x3 )
⇢0 cos(Hx3 ) + sin(Hx3 )
,
cos(Hx3 ) ⇢0 sin(Hx3 )
⌧ (2⇡) =
1
,
⌧ (0)
Background
1
f2
+ Z , strong
satisfies
4
1constraint
H2
⇢(2⇡) =
4
+ Z.
1
⇢(0)
Patching is generated by generalized diffeomorphism:
30
Donnerstag, 10. Juli 14
E.g. double elliptic background:
⌧ (x3 )
=
⇢(x3 )
=
=)
⌧0 cos(f x3 ) + sin(f x3 )
,
cos(f x3 ) ⌧0 sin(f x3 )
⇢0 cos(Hx3 ) + sin(Hx3 )
,
cos(Hx3 ) ⇢0 sin(Hx3 )
1
,
⌧ (0)
⌧ (2⇡) =
Background
1
f2
+ Z , strong
satisfies
4
1constraint
H2
⇢(2⇡) =
4
+ Z.
1
⇢(0)
Patching is generated by generalized diffeomorphism:
x3 ! x3 + 2⇡
)
x
˜01 =
x
˜2 ,
x
˜02 =
x1 ,
x01 =
x2 ,
x02 =
x
˜1 .
30
Donnerstag, 10. Juli 14
E.g. double elliptic background:
⌧ (x3 )
=
⇢(x3 )
=
=)
⌧0 cos(f x3 ) + sin(f x3 )
,
cos(f x3 ) ⌧0 sin(f x3 )
⇢0 cos(Hx3 ) + sin(Hx3 )
,
cos(Hx3 ) ⇢0 sin(Hx3 )
1
,
⌧ (0)
⌧ (2⇡) =
Background
1
f2
+ Z , strong
satisfies
4
1constraint
H2
⇢(2⇡) =
4
+ Z.
1
⇢(0)
Patching is generated by generalized diffeomorphism:
Patching does
x3 ! x3 + 2⇡
)
x
˜01 =
x
˜2 ,
x
˜02 =
x1 ,
x01 =
x2 ,
x02 =
x
˜1 .
30
Donnerstag, 10. Juli 14
not satisfy strong
constraint
E.g. double elliptic background:
⌧ (x3 )
=
⇢(x3 )
=
=)
⌧0 cos(f x3 ) + sin(f x3 )
,
cos(f x3 ) ⌧0 sin(f x3 )
⇢0 cos(Hx3 ) + sin(Hx3 )
,
cos(Hx3 ) ⇢0 sin(Hx3 )
1
,
⌧ (0)
⌧ (2⇡) =
Background
1
f2
+ Z , strong
satisfies
4
1constraint
H2
⇢(2⇡) =
4
+ Z.
1
⇢(0)
Patching is generated by generalized diffeomorphism:
Patching does
x3 ! x3 + 2⇡
)
x
˜01 =
x
˜2 ,
x
˜02 =
x1 ,
x01 =
x2 ,
x02 =
x
˜1 .
not satisfy strong
constraint
Corresponding Killing vectors of background:
0
1
B0
B
B0
ˆ
J
K Iˆ = B
B0
B
@0
0
Donnerstag, 10. Juli 14
0
1
0
0
0
0
0
1
3
2 (Hx
1
0
0
0
+ fx
˜ )
3
0
+ fx
˜2 )
0
1
0
0
1
2
2 (Hx
30
0
+ Hx
˜3 )
0
0
1
0
1
3
2 (f x
1
2
2 (f x
1
0
+ Hx
˜2 )C
C
C
0
C
C
0
C
A
0
1
E.g. double elliptic background:
⌧ (x3 )
=
⇢(x3 )
=
=)
⌧0 cos(f x3 ) + sin(f x3 )
,
cos(f x3 ) ⌧0 sin(f x3 )
⇢0 cos(Hx3 ) + sin(Hx3 )
,
cos(Hx3 ) ⇢0 sin(Hx3 )
1
,
⌧ (0)
⌧ (2⇡) =
Background
1
f2
+ Z , strong
satisfies
4
1constraint
H2
⇢(2⇡) =
4
+ Z.
1
⇢(0)
Patching is generated by generalized diffeomorphism:
Patching does
x3 ! x3 + 2⇡
)
x
˜01 =
x
˜2 ,
x
˜02 =
x1 ,
x01 =
x2 ,
x02 =
x
˜1 .
not satisfy strong
constraint
Corresponding Killing vectors of background:
0
1
B0
B
B0
ˆ
J
K Iˆ = B
B0
B
@0
0
Donnerstag, 10. Juli 14
0
1
0
0
0
0
0
1
3
2 (Hx
1
0
0
0
+ fx
˜ )
3
0
0do
Killing
vectors
1
1
3
3
2
˜ ) 2 (f x + H x
˜2 )C
2 (f x + H x
C
C
0
not satisfy0 strong constraint.
C
C
0
0
C
However
their
algebra
A
1
0
0 closes!
1
0
+ fx
˜2 )
0
1
0
0
1
2
2 (Hx
1
30
● There situations, where the strong constraint even for the
background can be violated. - This seems to be the case for
certain very asymmetric orbifolds. C. Condeescu, I. Florakis, C. Kounnas, D.Lüst, arXiv:1307.0999
⌧0 cos(f4 x3 + f2 x
˜3 ) + sin(f4 x3 + f2 x
˜3 )
⌧ (x3 , x
˜3 ) =
,
cos(f4 x3 + f2 x
˜3 ) ⌧0 sin(f4 x3 + f2 x
˜3 )
⇢0 cos(g4 x3 + g2 x
˜3 ) + sin(g4 x3 + g2 x
˜3 )
⇢(x3 , x
˜3 ) =
,
cos(g4 x3 + g2 x
˜3 ) ⇢0 sin(g4 x3 + g2 x
˜3 )
Fluxes:
Parameter
f4
f2
g4
g2
1
f4 , g4 2 + Z
8
1
f2 , g2 2 + Z
4
Fluxes
f, f˜
˜
Q, Q
H, Q
f˜, R
R
Asymmetric ZL
⇥
Z
4
2 orbifold with H, f ,Q,R-fluxes.
This (partially?) solves a so far existing puzzle between
effective SUGRA and uplift/string
compactification.
31
Donnerstag, 10. Juli 14
III) De Sitter and Inflation
32
Donnerstag, 10. Juli 14
F. Hassler, D. Lüst, S. Massai, arXiv:1405.2325
III) De Sitter and Inflation
F. Hassler, D. Lüst, S. Massai, arXiv:1405.2325
Effective scalar potential of double elliptic backgrounds:

1 f12 + 2f1 f2 (⌧R2 ⌧I2 ) + f22 |⌧ |4
H 2 + 2HQ(⇢2R ⇢2I ) + Q2 |⇢|4
+
V (⌧, ⇢) = 2
R
2⌧I2
2⇢2I
32
Donnerstag, 10. Juli 14
0
III) De Sitter and Inflation
F. Hassler, D. Lüst, S. Massai, arXiv:1405.2325
Effective scalar potential of double elliptic backgrounds:

1 f12 + 2f1 f2 (⌧R2 ⌧I2 ) + f22 |⌧ |4
H 2 + 2HQ(⇢2R ⇢2I ) + Q2 |⇢|4
+
V (⌧, ⇢) = 2
R
2⌧I2
2⇢2I
The potential is positive semi-definite.
No up-lift is needed!
32
Donnerstag, 10. Juli 14
0
III) De Sitter and Inflation
F. Hassler, D. Lüst, S. Massai, arXiv:1405.2325
Effective scalar potential of double elliptic backgrounds:

1 f12 + 2f1 f2 (⌧R2 ⌧I2 ) + f22 |⌧ |4
H 2 + 2HQ(⇢2R ⇢2I ) + Q2 |⇢|4
+
V (⌧, ⇢) = 2
R
2⌧I2
2⇢2I
0
The potential is positive semi-definite.
No up-lift is needed!
Vacuum structure:
• Minkowski vacua:
⇢?R
= 0,
e.g.
⇢?I
=
s
HQ > 0
H
,
Q
Vmin = 0
H = Q = 1/4
Asymmetric
32
Donnerstag, 10. Juli 14
L
Z4
orbifold.
HQ < 0
H
? 2
? 2
(⇢R ) + (⇢I ) =
,
Q
• de Sitter vacua:
Vmin =
However here the radius R is not stabilized.
33
Donnerstag, 10. Juli 14
4HQ > 0
HQ < 0
H
? 2
? 2
(⇢R ) + (⇢I ) =
,
Q
• de Sitter vacua:
Vmin =
4HQ > 0
However here the radius R is not stabilized.
Another option: SO(2,2) gauging
H2
V (⇢, ⌧ ) = 2 1 + 2(⇢2R
2⇢I
⇢2I )
+ |⇢|
4
H2
H2
2
2
+
(1 + |⇢| )(1 + |⌧ | ) + 2 1 + 2(⌧R2
⇢I ⌧ I
2⌧I
⇢ = ⌧ = i with Vmin = 4H
?
?
⌧I2 ) + |⌧ |4
2
All moduli ⌧ and ⇢ have positive mass square.
33
Donnerstag, 10. Juli 14
Inflation from non-geometric backgrounds:
There are some attractive features for inflation:
34
Donnerstag, 10. Juli 14
Inflation from non-geometric backgrounds:
There are some attractive features for inflation:
• The potentials are positive with quadratic and quartic
couplings that depend on the (non)-geometric fluxes.
No up-lift is needed!
One needs to tune fluxes to obtain slow roll inflation.
( Orbifolds with high order of twist!)
34
Donnerstag, 10. Juli 14
Inflation from non-geometric backgrounds:
There are some attractive features for inflation:
• The potentials are positive with quadratic and quartic
couplings that depend on the (non)-geometric fluxes.
No up-lift is needed!
One needs to tune fluxes to obtain slow roll inflation.
( Orbifolds with high order of twist!)
• The non-trivial monodromies allow for enlarged field
(McAllsiter, Silverstein, Westphal, 2008)
range of the inflaton field.
Realization of monodromy inflation in order to
obtain a visible tensor to scalar ratio
(gravitational waves).
34
Donnerstag, 10. Juli 14
Enlarged field range for parabolic monodromy
⇢ ! ⇢ + 1 or ⌧ ! ⌧ + 1 :
·, fl
...
...
i
≠ 32
≠ 12
1
2
3
2
Infinite field range for ⌧R or ⇢R .
35
Donnerstag, 10. Juli 14
Enlarged field range for elliptic Z4 monodromy
1
1
⇢!
or ⌧ !
:
⇢
⌧
·, fl
i
≠ 12
1
2
Infinite field range for combinations of
⌧R and ⌧I or combinations of ⇢R and ⇢I .
36
Donnerstag, 10. Juli 14
Enlarged field range for elliptic Z6 monodromy
⇢!
1
+1
⇢
or ⌧ !
1
+1 :
⌧
·, fl
i
≠ 12
1
2
3
2
Infinite field range for combinations of
⌧R and ⌧I or combinations of ⇢R and ⇢I .
37
Donnerstag, 10. Juli 14
Simple elliptic model for non-geometric inflation:
Expect fluxes
1
H, Q ⇠
N
Kinetic energy:
Inflaton field:
Lkin

1
= 2 (@⇢R )2 + (@⇢I )2
4⇢I
⇢R
=
2⇢I
Inflaton potential:
V ( , ⇢I ) = V0 (⇢I ) + m (⇢I )
2
V0 (⇢I ) =
H2
2HQ⇢2I + Q2 ⇢4I
,
2⇢2I
+ (⇢I )
m2 (⇢I ) = 4HQ + 4Q2 ⇢2I ,
38
Donnerstag, 10. Juli 14
2
4
(⇢I ) = 8Q2 ⇢2I
Minimization with respect to ⇢I :
)
V0 = 0
Inflaton mass and self-coupling:
m = 4HQ
2
✓
◆
1
?
2
+ ⇢I M s ,
?
⇢I
? 3
2
(⇢
2
2
I)
gs MP 2 =
m
1 + (⇢?I )2
Small
1 2 ?
= 2 M s ⇢I )
gs
?
⇢
small value for I .
39
Donnerstag, 10. Juli 14
2
(MP
=
?
8HQ⇢I
Slow roll inflation with 60 e-foldings and
ns ⇠ 0.967 ,
ns = 1
MP2
✏=
2
m ' 6 ⇥ 10
6
✓
@ V
V
MP ,
r ⇠ 0.133 (BICEP2)
6✏ + 2⌘ ,
◆2
2
0
⌘=
,
1/4
V0
H ' Q ' 10
0
r = 16✏
' 10
5
,
MP2
2
@ V
V
!
' 15MP
MP )
?
⇢I
 10
2
Need very small fluxes (large monodromy N ' 105 )
and sub-stringy value for the volume of the fibre.
40
Donnerstag, 10. Juli 14
IV) Summary
41
Donnerstag, 10. Juli 14
IV) Summary
● DFT allows for consistent reduction on non-geometric
backgrounds that go beyond SUGRA and also beyond
generalized geometry.
41
Donnerstag, 10. Juli 14
IV) Summary
● DFT allows for consistent reduction on non-geometric
backgrounds that go beyond SUGRA and also beyond
generalized geometry.
● Non-geometric backgrounds posses some attractive (generic)
features for string cosmology:
- Uplift to Minkowski or de Sitter
- Elliptic monodromy of finite order
Finite enlargement of field range for inflaton
Suppressed masses and couplings for inflaton
41
Donnerstag, 10. Juli 14
IV) Summary
● DFT allows for consistent reduction on non-geometric
backgrounds that go beyond SUGRA and also beyond
generalized geometry.
● Non-geometric backgrounds posses some attractive (generic)
features for string cosmology:
- Uplift to Minkowski or de Sitter
- Elliptic monodromy of finite order
Finite enlargement of field range for inflaton
Suppressed masses and couplings for inflaton
● Particle physics model building and full moduli stabilization
on non-geometric backgrounds still needs to be further
developed.
41
Donnerstag, 10. Juli 14
IV) Summary
● DFT allows for consistent reduction on non-geometric
backgrounds that go beyond SUGRA and also beyond
generalized geometry.
● Non-geometric backgrounds posses some attractive (generic)
features for string cosmology:
- Uplift to Minkowski or de Sitter
- Elliptic monodromy of finite order
Finite enlargement of field range for inflaton
Suppressed masses and couplings for inflaton
● Particle physics model building and full moduli stabilization
on non-geometric backgrounds still needs to be further
developed.
Thank you very much!
Donnerstag, 10. Juli 14
41