Cambridge Books Online

Cambridge Books Online
http://ebooks.cambridge.org/
Clifford Algebras: An Introduction
D. J. H. Garling
Book DOI: http://dx.doi.org/10.1017/CBO9780511972997
Online ISBN: 9780511972997
Hardback ISBN: 9781107096387
Paperback ISBN: 9781107422193
Chapter
References pp. 191-192
Chapter DOI: http://dx.doi.org/10.1017/CBO9780511972997.014
Cambridge University Press
References
[Art]
[ABS]
[AtS]
[Bay]
[BGV]
[BDS]
[BtD]
[Che]
[Cli1]
[Cli2]
[Coh]
[Dir]
[DoL]
[Duo]
[GRF]
[GiM]
E. Artin, Geometric algebra, John Wiley, New York, 1988.
M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3
(Supplement 1) (1964), 3-38.
M. F. Atiyah and I. M. Singer, The index of elliptic operators on
compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422-433.
William E. Baylis (editor), Clifford (Geometric) Algebras, Birkh¨
auser,
New York, 1996.
Nicole Berline, Ezra Getzler and Mich`ele Vergne, Heat Kernels and
Dirac Operators, Springer, Berlin, 1996.
F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman,
London, 1983.
Theodor Br¨
ocker and Tammo tom Dieck, Representations of Compact
Lie groups, Springer, Berlin, 1995.
Claude Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Collected works, Volume 2, Springer, Berlin, 1997.
W. K. Clifford, Applications of Grassmann’s extensive algebra, Amer.
J. Math. 1 (1876) 350-358.
W. K. Clifford, On the classification of geometric algebras, Mathematical papers, William Kingdon Clifford, AMS Chelsea Publishing,
2007, 397-401.
P. M. Cohn, Classic Algebra, John Wiley, Chichester, 2000.
P. A. M. Dirac, The Principles of Quantum Mechanics, Fourth Edition, Oxford University Press, 1958
Chris Doran and Anthony Lasenby, Geometric Algebra for Physicists,
Cambridge University Press, Cambridge, 2003.
Javier Duoandikoetxea, Fourier Analysis, Amer. Math. Soc., Providence, RI, 2001.
J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland, Amsterdam, 1985.
John E. Gilbert and Margaret M. E. Murray, Clifford Algebras and
Dirac Operators in Harmonic Analysis, Cambridge University Press,
Cambridge, 1991.
Downloaded from Cambridge Books Online by IP 193.219.52.43 on Mon Mar 10 08:20:25 GMT 2014.
http://dx.doi.org/10.1017/CBO9780511972997.014
Cambridge Books Online © Cambridge University Press, 2014
192
[Hah]
[Har]
[HeM]
[Jac]
[Lam]
[Lan]
[LaM]
[Lou]
[MaB]
[Mey]
[PeR]
[PlR]
[Por1]
[Por2]
[Roe]
[Rya]
[Sep]
[Ste]
[StW]
[Sud]
References
Alexander J. Hahn, Quadratic Algebras, Clifford Algebras and Arithmetic Witt Groups, Springer, Berlin, 1994.
F. Reese Harvey, Spinors and Calibrations, Academic Press, San
Diego, CA, 1990.
Jacques Helmstetter and Artibano Micali, Quadratic Mappings and
Clifford Algebras, Birkha¨
user, Basel, 2008.
Nathan Jacobson, Basic Algebra I and II, W.H. Freeman, San Francisco, CA, 1974, 1980
T. Y. Lam, Introduction to Quadratic Forms over Fields, Amer. Math.
Soc., Providence, RI, 2004.
E. C. Lance Hilbert C ∗ -modules, London Mathematical Society Lecture notes 210, Cambridge University Press, Cambridge, 1995.
H. Blaine Lawson, Jr. and Marie-Louise Michelsohn, Spin Geometry,
Princeton University Press, Princeton, NJ, 1989.
Pertti Lounesto, Clifford Algebras and Spinors, London Mathematical
Society Lecture notes 286, Cambridge University Press, Cambridge,
2001.
Saunders Mac Lane and Garrett Birkhoff, Algebra Third Edition,
AMS Chelsea, 1999.
Paul-Andr´e Meyer, Quantum Probability for Probabilists, Springer
Lecture Notes in Mathematics 1538, Springer, Berlin, 1993.
R. Penrose and W. Rindler, Spinors and Space-time I and II, Cambridge University Press, Cambridge, 1984, 1986.
R. J. Plymen and P. L. Robinson, Spinors in Hilbert Space, Cambridge
University Press, Cambridge, 1994.
I. R. Porteous, Topological Geometry, Cambridge University Press,
Cambridge, 1981.
I. R. Porteous, Clifford Algebras and the Classical Groups, Cambridge
University Press, Cambridge, 1995.
John Roe, Elliptic Operators, Topology and Asymptotic Methods, Second edition, Chapman and Hall/CRC, London 2001.
John Ryan (editor), Clifford Algebras in Analysis and Related Topics,
CRC Press, Boca Raton, FL, 1996.
Mark R. Sepanski, Compact Lie Groups, Springer, Berlin, 2007.
Elias M. Stein, Singular Integrals and Differentiability Properties of
Functions, Princeton University Press, Princeton, NJ, 1970.
Elias M. Stein and Guido Weiss, Introduction to Fourier Analysis on
Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971.
Anthony Sudbery, Quantum Mechanics and the Particles of Nature,
Cambridge University Press, Cambridge, 1986.
Downloaded from Cambridge Books Online by IP 193.219.52.43 on Mon Mar 10 08:20:25 GMT 2014.
http://dx.doi.org/10.1017/CBO9780511972997.014
Cambridge Books Online © Cambridge University Press, 2014