Cambridge Books Online http://ebooks.cambridge.org/ Clifford Algebras: An Introduction D. J. H. Garling Book DOI: http://dx.doi.org/10.1017/CBO9780511972997 Online ISBN: 9780511972997 Hardback ISBN: 9781107096387 Paperback ISBN: 9781107422193 Chapter References pp. 191-192 Chapter DOI: http://dx.doi.org/10.1017/CBO9780511972997.014 Cambridge University Press References [Art] [ABS] [AtS] [Bay] [BGV] [BDS] [BtD] [Che] [Cli1] [Cli2] [Coh] [Dir] [DoL] [Duo] [GRF] [GiM] E. Artin, Geometric algebra, John Wiley, New York, 1988. M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (Supplement 1) (1964), 3-38. M. F. Atiyah and I. M. Singer, The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422-433. William E. Baylis (editor), Clifford (Geometric) Algebras, Birkh¨ auser, New York, 1996. Nicole Berline, Ezra Getzler and Mich`ele Vergne, Heat Kernels and Dirac Operators, Springer, Berlin, 1996. F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman, London, 1983. Theodor Br¨ ocker and Tammo tom Dieck, Representations of Compact Lie groups, Springer, Berlin, 1995. Claude Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Collected works, Volume 2, Springer, Berlin, 1997. W. K. Clifford, Applications of Grassmann’s extensive algebra, Amer. J. Math. 1 (1876) 350-358. W. K. Clifford, On the classification of geometric algebras, Mathematical papers, William Kingdon Clifford, AMS Chelsea Publishing, 2007, 397-401. P. M. Cohn, Classic Algebra, John Wiley, Chichester, 2000. P. A. M. Dirac, The Principles of Quantum Mechanics, Fourth Edition, Oxford University Press, 1958 Chris Doran and Anthony Lasenby, Geometric Algebra for Physicists, Cambridge University Press, Cambridge, 2003. Javier Duoandikoetxea, Fourier Analysis, Amer. Math. Soc., Providence, RI, 2001. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland, Amsterdam, 1985. John E. Gilbert and Margaret M. E. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, Cambridge, 1991. Downloaded from Cambridge Books Online by IP 193.219.52.43 on Mon Mar 10 08:20:25 GMT 2014. http://dx.doi.org/10.1017/CBO9780511972997.014 Cambridge Books Online © Cambridge University Press, 2014 192 [Hah] [Har] [HeM] [Jac] [Lam] [Lan] [LaM] [Lou] [MaB] [Mey] [PeR] [PlR] [Por1] [Por2] [Roe] [Rya] [Sep] [Ste] [StW] [Sud] References Alexander J. Hahn, Quadratic Algebras, Clifford Algebras and Arithmetic Witt Groups, Springer, Berlin, 1994. F. Reese Harvey, Spinors and Calibrations, Academic Press, San Diego, CA, 1990. Jacques Helmstetter and Artibano Micali, Quadratic Mappings and Clifford Algebras, Birkha¨ user, Basel, 2008. Nathan Jacobson, Basic Algebra I and II, W.H. Freeman, San Francisco, CA, 1974, 1980 T. Y. Lam, Introduction to Quadratic Forms over Fields, Amer. Math. Soc., Providence, RI, 2004. E. C. Lance Hilbert C ∗ -modules, London Mathematical Society Lecture notes 210, Cambridge University Press, Cambridge, 1995. H. Blaine Lawson, Jr. and Marie-Louise Michelsohn, Spin Geometry, Princeton University Press, Princeton, NJ, 1989. Pertti Lounesto, Clifford Algebras and Spinors, London Mathematical Society Lecture notes 286, Cambridge University Press, Cambridge, 2001. Saunders Mac Lane and Garrett Birkhoff, Algebra Third Edition, AMS Chelsea, 1999. Paul-Andr´e Meyer, Quantum Probability for Probabilists, Springer Lecture Notes in Mathematics 1538, Springer, Berlin, 1993. R. Penrose and W. Rindler, Spinors and Space-time I and II, Cambridge University Press, Cambridge, 1984, 1986. R. J. Plymen and P. L. Robinson, Spinors in Hilbert Space, Cambridge University Press, Cambridge, 1994. I. R. Porteous, Topological Geometry, Cambridge University Press, Cambridge, 1981. I. R. Porteous, Clifford Algebras and the Classical Groups, Cambridge University Press, Cambridge, 1995. John Roe, Elliptic Operators, Topology and Asymptotic Methods, Second edition, Chapman and Hall/CRC, London 2001. John Ryan (editor), Clifford Algebras in Analysis and Related Topics, CRC Press, Boca Raton, FL, 1996. Mark R. Sepanski, Compact Lie Groups, Springer, Berlin, 2007. Elias M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. Elias M. Stein and Guido Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971. Anthony Sudbery, Quantum Mechanics and the Particles of Nature, Cambridge University Press, Cambridge, 1986. Downloaded from Cambridge Books Online by IP 193.219.52.43 on Mon Mar 10 08:20:25 GMT 2014. http://dx.doi.org/10.1017/CBO9780511972997.014 Cambridge Books Online © Cambridge University Press, 2014
© Copyright 2024 ExpyDoc