Gas - NAOC Colloquium Program

Star Formation In Nearby
“Extreme” Galaxies
Yong Shi (施勇,Nanjing University)
Collaborators: Lee Armus (Caltech, US), Yu Gao (PMO, China), Qiusheng
Gu (NJU, China), George Helou (Caltech, US), Sabrina Stierwalt (U.of
Virginia, US), Junzhi Wang (SHAO, China), Lin Yan (Caltech, US), Zhi-Yu
Zhang (Edinburgh, England)
Outline
• Introduction
• Star formation at extreme low stellar densities:
extended Schmidt law.
• Star formation at extreme low metallicities.
• Star formation in other nearby “extreme”
galaxies.
Nov 26, 2014
国家天文台
1. Introduction
Gas  Stars
Stellar Mass
Growth
Nov 26, 2014
Planet
formation
Chemical
Enrichment
国家天文台
Super-massive
blackhole growth
1. Introduction
Star formation is a complicated physical process.
Nov 26, 2014
国家天文台
1. Introduction
For extragalactic studies of star formation, a
powerful empirical tool is to investigate
Star Formation Rate
Nov 26, 2014
V.S.
国家天文台
Gas Mass
1. Introduction
SFR Surface Density [M/yr/kpc2]
Pioneered by M. Schmidt in 1959, and R. Kennicutt in
1989 (Kennicutt-Schmidt relation).
Nov 26, 2014
国家天文台
Gas Mass Surface Density [M/pc2]
1. Introduction
The importance of SFR-gas relationships (star
formation law):
 Observational constraints on how stars form.
ILLUSTRIS
 Tools to making stars in
cosmological simulations.
Nov 26, 2014
国家天文台
SFR surface density
1. Introduction
Daddi+2010
Bigiel+2008
Leroy+2008
Kennicutt+1998
Gao+2004
Zhang+2014
Low-SurfaceBrightness
Nov 26, 2014
Gas Surface Density
Star Formation Threshold
国家天文台
1. Introduction
Over the space and time, galaxies present a large
range of properties.
Nov 26, 2014
国家天文台
1. Introduction
More studies are underway to explore star formation in
the full range of galaxy properties.
 Extreme low stellar mass densities (thanks to CFHT
through China Telescope Access Program).
(Shi et al. 2011, ApJ, 733, 87; Shi et al. in preparation).
 Extreme low metallicities (Shi et al. 2014, Nature,
514, 335; Shi et al. in preparation).
 Other “extreme” galaxies in the literature.
Nov 26, 2014
国家天文台
2. Extended Schmidt law
CFHT deep imaging of nearby galaxies.
NGC 5194
Nov 26, 2014
NGC 5194
国家天文台
2. Extended Schmidt law
Kennicutt-Schmidt relation:
1.4 0.15
SFR (gas)
Nov 26, 2014
国家天文台
Stellar gravity:
Help gas collapse
Remove gas angular
momentum
Metal Enrichment:
ISM cooling
Dust catalyzes H2 formation
Dust shields H2 from radiation
Stellar Radiation:
Compress Gas to increase SFRs
Heat gas to decrease SFRs
Nov 26, 2014
国家天文台
2. Extended Schmidt law
New approach:
ΣSFR as a dependent variable
Σgas and Σstar as independent variables
Diverse Galaxy Samples:
• Nearby Spiral Galaxies (NNG)
• Low-Surface-Brightness (LSB) Galaxies
• Local LIRGs
• High-z BzK SFGs and SMGs
Nov 26, 2014
国家天文台
2. Extended Schmidt law
ΣSFR as a function of Σgas and Σstar
A unity index on Σgas gives a clear physical
implication of the relation:
Star-Formation-Efficiency (SFE)=SFR/Mgas is
a function of the stellar density, i.e., the stellar
density controls how efficient new stars form.
Nov 26, 2014
国家天文台
SFR Surface Density
Extended Schmidt Law
Nov 26, 2014
KS Law
Z=0 and high-z LIRGs
Nearby NGs
LSB
国家天文台
Star Formation Efficiency
Extended Schmidt Law
Nov 26, 2014
国家天文台
KS Law
Stellar gravity:
Help gas collapse
Remove gas angular
momentum
Metal Enrichment:
ISM cooling
Dust catalyzes H2 formation
Dust shields H2 from radiation
Stellar Radiation:
Compress Gas to increase SFRs
Heat gas to decrease SFRs
Nov 26, 2014
国家天文台
2. Extended Schmidt law: Physical Origin
Stellar Gravity And Radiation:
 Free Fall In Stellar Potential
 Pressure-Supported Star Formation
 Stellar Torque [for merging cases]
Nov 26, 2014
国家天文台
Star formation as gas collapse per
timescale:
SFR 
gas

A free-fall timescale in a stellar
gravitational potential:

   ff 
1
 0.5
h 0.5
 0.5 ; if Σstar >> Σgas
star
This explains the extended Schmidt law if Σstar >> Σgas
Nov 26, 2014
国家天文台
Poutflow = Pgravity
Poutflow » PSN + PRAD µ SSFR
(Thompson et al. 2005)
Pgravity  gas( 
0.5
star

0.5
  )  gas star
4
h 0.5
0.5
gas
(Blitz & Rosolowsky et al. 2004)

This
explains
the extended Schmidt
law if Σstar >> Σgas
Nov 26,
2014
国家天文台
Hopkins et al. (2009)
Stars:
 collisionless [relaxing violently]
 angular momentum removes quickly
Gas:
 collisional
 conserves most of its angular momentum.
 due to the lag of stellar motion, stellar gravity pulls back gas
Nov 26, 2014
国家天文台
and
remove ang. mom.
Nov 26, 2014
国家天文台
fstarburst = fgas
f starburst / f gas µ f star
Nov 26, 2014
国家天文台
2. Extended Schmidt Law: Summary
Stellar masses may play an important role in
regulating the star formation efficiency.
SSFR µ Sgas S
0.5
star
Nov 26, 2014
国家天文台
2. Extended Schmidt law: follow up works
SFR Surface Density
Extended Schmidt Law
Nov 26, 2014
KS Law
DEEP CFHT observations of galaxy outer disks
国家天文台
3. Star formation at low metallicity:
Introduction
Cosmic Re-ionization: one of
the most important modern
astrophysical problems.
Pop. III stars initiate the reionization; Pop. II stars
complete the re-ionization.
Nov 26, 2014
国家天文台
3. Star formation at low metallicity:
Introduction
However, the basic properties of formation of Pop.
III and Pop. II stars are far from known:
Transition metallicity.
Star formation efficiency (SFR/gas-mass).
Lyman photon escape fraction.
Structures of ISM and IGM.
….
Nov 26, 2014
国家天文台
3. Star formation at low metallicity:
Introduction
• Severe limitations of current capabilities in
probing the above properties.
• Using nearby metal poor galaxies as local
laboratories.
Nov 26, 2014
国家天文台
3. Star formation at low metallicities:
Introduction
Existing studies of star formation law are limited
to galaxies with Z > 20%Z:
Kennicutt et al. 2007
Bigiel et al. 2010
Bolatto et al. 2011
….
Nov 26, 2014
国家天文台
3. Star formation at low metallicity:
Introduction
However,
Pop. II Stars:
1%-10% Z
Wise et al. (2012)
Wise et al. 2012 ApJ, 745, 50
Nov 26, 2014
国家天文台
3. Star formation at low metallicity:
Herschel Observations
Sample (PI: Y. Shi) :
Solar 12+log(O/H)=8.65( Pettini & Pagel 2004)
Broad-band Images:
PACS (70 and 160 um) + SPIRE (250, 350, 500 um)
Nov 26, 2014
国家天文台
3. Star formation at low metallicity:
Herschel Observations
Sextans A
Blue: HI gas, Green: Far-UV, RED: 70+250 um
Nov 26, 2014
国家天文台
3. Star formation at low metallicity:
why spatially-resolved
• SFR: Relatively Easy!
• Cold Gas:
CO is a poor tracer of H2 in EMP
galaxies: faint and unknown CO-to-H2
factor.
 Employ dust to trace the cold gas
content.
Nov 26, 2014
国家天文台
3. Star formation at low metallicity: why
spatially-resolved
Spatially Resolved Dust Map!
Diffuse Region!
Star Forming Regions!
GDR x Dust-Mass=Gas
Mass
GDR=HI-gasmass/dust-mass
Nov 26, 2014
国家天文台
3. Star formation at low metallicity:
why spatially-resolved
Gas-to-dust ratio is constant within 0.3 dex if taking out the
metallicity gradient (Sandstrom et al. 2013, ApJ, 777, 5)
Nov 26, 2014
国家天文台
3. Star formation at low metallicity: Multiband Images
Sextans A
Blue: HI gas, Green: Far-UV, RED: 70+250 um
Nov 26, 2014
国家天文台
3. Star formation at low metallicity: :
Draine-Li Model Fitting
Nov 26, 2014
国家天文台
3. Star formation at low metallicity: :
gas-to-dust ratio
Sextans A
 diffuse 1: 6900
 diffuse 2: 8600
 diffuse 3: 6600
 total diffuse: 14000
ESO 146-G14:
 total diffuse: 4400
Nov 26, 2014
国家天文台
 Spiral galaxies (Solar metallicity)
3. 结果与讨论。
Oct 14, 2014, 北京
先导b:宇宙结构起源
 Spirals
3.
结果与讨论。
 HI gas of metal poor galaxies
Oct 14, 2014, 北京
先导b:宇宙结构起源
 Spirals
结果与讨论。
 HI gas of 3.
metal
poor galaxies
 Dust-based total gas of metal poor galaxies
Oct 14, 2014, 北京
先导b:宇宙结构起源




Spirals
HI gas of 3.
metal
poor galaxies
结果与讨论。
Dust-based total gas of metal poor galaxies
Theoretical models
Oct 14, 2014, 北京
先导b:宇宙结构起源
A much higher molecular gas fraction is seen than
3. 结果与讨论。
models’ predictions.
Oct 14, 2014, 北京
先导b:宇宙结构起源
Nature News & Views:
Nov 26, 2014
国家天文台
3. Star formation at low metallicity: :
planned projects.
What suppresses star formation?
 A large reservoir of molecular gas.
 Searching for CO emission (IRAM 30 m).
 Searching for warm H2 emission (Subaru 8 m?).
 Characterizing the kinematics.
 Ionized gas kinematics.
 molecular gas kinematics.
Nov 26, 2014
国家天文台
4. Other “extreme” galaxies
A large reservoir of warm molecular gas in
3C 326 (Ogle et al. 2007, ApJ, 668, 699).
3C 326
Nov 26, 2014
国家天文台
4. Other “extreme” galaxies
Jet driven turbulence may inhibit star formation
(Guillard et al. 2014, arXiv:1410.6155)
Nov 26, 2014
国家天文台
4. Other “extreme” galaxies
ALMA observations CO (6-5) of a merger NGC 1614.
Nov 26, 2014
国家天文台
4. Other “extreme” galaxies
Xu, C. K. et al. 2014, ApJ, arXiv:1411.1111
Nov 26, 2014
国家天文台
A summary
• Besides gas, factors such as existing stars,
metallicities, radio jets and mergers, also
likely play roles in regulating star
formation.
• Star formation law is not a universal
“law”.
Nov 26, 2014
国家天文台
Nov 26, 2014
国家天文台