Star Formation In Nearby “Extreme” Galaxies Yong Shi (施勇,Nanjing University) Collaborators: Lee Armus (Caltech, US), Yu Gao (PMO, China), Qiusheng Gu (NJU, China), George Helou (Caltech, US), Sabrina Stierwalt (U.of Virginia, US), Junzhi Wang (SHAO, China), Lin Yan (Caltech, US), Zhi-Yu Zhang (Edinburgh, England) Outline • Introduction • Star formation at extreme low stellar densities: extended Schmidt law. • Star formation at extreme low metallicities. • Star formation in other nearby “extreme” galaxies. Nov 26, 2014 国家天文台 1. Introduction Gas Stars Stellar Mass Growth Nov 26, 2014 Planet formation Chemical Enrichment 国家天文台 Super-massive blackhole growth 1. Introduction Star formation is a complicated physical process. Nov 26, 2014 国家天文台 1. Introduction For extragalactic studies of star formation, a powerful empirical tool is to investigate Star Formation Rate Nov 26, 2014 V.S. 国家天文台 Gas Mass 1. Introduction SFR Surface Density [M/yr/kpc2] Pioneered by M. Schmidt in 1959, and R. Kennicutt in 1989 (Kennicutt-Schmidt relation). Nov 26, 2014 国家天文台 Gas Mass Surface Density [M/pc2] 1. Introduction The importance of SFR-gas relationships (star formation law): Observational constraints on how stars form. ILLUSTRIS Tools to making stars in cosmological simulations. Nov 26, 2014 国家天文台 SFR surface density 1. Introduction Daddi+2010 Bigiel+2008 Leroy+2008 Kennicutt+1998 Gao+2004 Zhang+2014 Low-SurfaceBrightness Nov 26, 2014 Gas Surface Density Star Formation Threshold 国家天文台 1. Introduction Over the space and time, galaxies present a large range of properties. Nov 26, 2014 国家天文台 1. Introduction More studies are underway to explore star formation in the full range of galaxy properties. Extreme low stellar mass densities (thanks to CFHT through China Telescope Access Program). (Shi et al. 2011, ApJ, 733, 87; Shi et al. in preparation). Extreme low metallicities (Shi et al. 2014, Nature, 514, 335; Shi et al. in preparation). Other “extreme” galaxies in the literature. Nov 26, 2014 国家天文台 2. Extended Schmidt law CFHT deep imaging of nearby galaxies. NGC 5194 Nov 26, 2014 NGC 5194 国家天文台 2. Extended Schmidt law Kennicutt-Schmidt relation: 1.4 0.15 SFR (gas) Nov 26, 2014 国家天文台 Stellar gravity: Help gas collapse Remove gas angular momentum Metal Enrichment: ISM cooling Dust catalyzes H2 formation Dust shields H2 from radiation Stellar Radiation: Compress Gas to increase SFRs Heat gas to decrease SFRs Nov 26, 2014 国家天文台 2. Extended Schmidt law New approach: ΣSFR as a dependent variable Σgas and Σstar as independent variables Diverse Galaxy Samples: • Nearby Spiral Galaxies (NNG) • Low-Surface-Brightness (LSB) Galaxies • Local LIRGs • High-z BzK SFGs and SMGs Nov 26, 2014 国家天文台 2. Extended Schmidt law ΣSFR as a function of Σgas and Σstar A unity index on Σgas gives a clear physical implication of the relation: Star-Formation-Efficiency (SFE)=SFR/Mgas is a function of the stellar density, i.e., the stellar density controls how efficient new stars form. Nov 26, 2014 国家天文台 SFR Surface Density Extended Schmidt Law Nov 26, 2014 KS Law Z=0 and high-z LIRGs Nearby NGs LSB 国家天文台 Star Formation Efficiency Extended Schmidt Law Nov 26, 2014 国家天文台 KS Law Stellar gravity: Help gas collapse Remove gas angular momentum Metal Enrichment: ISM cooling Dust catalyzes H2 formation Dust shields H2 from radiation Stellar Radiation: Compress Gas to increase SFRs Heat gas to decrease SFRs Nov 26, 2014 国家天文台 2. Extended Schmidt law: Physical Origin Stellar Gravity And Radiation: Free Fall In Stellar Potential Pressure-Supported Star Formation Stellar Torque [for merging cases] Nov 26, 2014 国家天文台 Star formation as gas collapse per timescale: SFR gas A free-fall timescale in a stellar gravitational potential: ff 1 0.5 h 0.5 0.5 ; if Σstar >> Σgas star This explains the extended Schmidt law if Σstar >> Σgas Nov 26, 2014 国家天文台 Poutflow = Pgravity Poutflow » PSN + PRAD µ SSFR (Thompson et al. 2005) Pgravity gas( 0.5 star 0.5 ) gas star 4 h 0.5 0.5 gas (Blitz & Rosolowsky et al. 2004) This explains the extended Schmidt law if Σstar >> Σgas Nov 26, 2014 国家天文台 Hopkins et al. (2009) Stars: collisionless [relaxing violently] angular momentum removes quickly Gas: collisional conserves most of its angular momentum. due to the lag of stellar motion, stellar gravity pulls back gas Nov 26, 2014 国家天文台 and remove ang. mom. Nov 26, 2014 国家天文台 fstarburst = fgas f starburst / f gas µ f star Nov 26, 2014 国家天文台 2. Extended Schmidt Law: Summary Stellar masses may play an important role in regulating the star formation efficiency. SSFR µ Sgas S 0.5 star Nov 26, 2014 国家天文台 2. Extended Schmidt law: follow up works SFR Surface Density Extended Schmidt Law Nov 26, 2014 KS Law DEEP CFHT observations of galaxy outer disks 国家天文台 3. Star formation at low metallicity: Introduction Cosmic Re-ionization: one of the most important modern astrophysical problems. Pop. III stars initiate the reionization; Pop. II stars complete the re-ionization. Nov 26, 2014 国家天文台 3. Star formation at low metallicity: Introduction However, the basic properties of formation of Pop. III and Pop. II stars are far from known: Transition metallicity. Star formation efficiency (SFR/gas-mass). Lyman photon escape fraction. Structures of ISM and IGM. …. Nov 26, 2014 国家天文台 3. Star formation at low metallicity: Introduction • Severe limitations of current capabilities in probing the above properties. • Using nearby metal poor galaxies as local laboratories. Nov 26, 2014 国家天文台 3. Star formation at low metallicities: Introduction Existing studies of star formation law are limited to galaxies with Z > 20%Z: Kennicutt et al. 2007 Bigiel et al. 2010 Bolatto et al. 2011 …. Nov 26, 2014 国家天文台 3. Star formation at low metallicity: Introduction However, Pop. II Stars: 1%-10% Z Wise et al. (2012) Wise et al. 2012 ApJ, 745, 50 Nov 26, 2014 国家天文台 3. Star formation at low metallicity: Herschel Observations Sample (PI: Y. Shi) : Solar 12+log(O/H)=8.65( Pettini & Pagel 2004) Broad-band Images: PACS (70 and 160 um) + SPIRE (250, 350, 500 um) Nov 26, 2014 国家天文台 3. Star formation at low metallicity: Herschel Observations Sextans A Blue: HI gas, Green: Far-UV, RED: 70+250 um Nov 26, 2014 国家天文台 3. Star formation at low metallicity: why spatially-resolved • SFR: Relatively Easy! • Cold Gas: CO is a poor tracer of H2 in EMP galaxies: faint and unknown CO-to-H2 factor. Employ dust to trace the cold gas content. Nov 26, 2014 国家天文台 3. Star formation at low metallicity: why spatially-resolved Spatially Resolved Dust Map! Diffuse Region! Star Forming Regions! GDR x Dust-Mass=Gas Mass GDR=HI-gasmass/dust-mass Nov 26, 2014 国家天文台 3. Star formation at low metallicity: why spatially-resolved Gas-to-dust ratio is constant within 0.3 dex if taking out the metallicity gradient (Sandstrom et al. 2013, ApJ, 777, 5) Nov 26, 2014 国家天文台 3. Star formation at low metallicity: Multiband Images Sextans A Blue: HI gas, Green: Far-UV, RED: 70+250 um Nov 26, 2014 国家天文台 3. Star formation at low metallicity: : Draine-Li Model Fitting Nov 26, 2014 国家天文台 3. Star formation at low metallicity: : gas-to-dust ratio Sextans A diffuse 1: 6900 diffuse 2: 8600 diffuse 3: 6600 total diffuse: 14000 ESO 146-G14: total diffuse: 4400 Nov 26, 2014 国家天文台 Spiral galaxies (Solar metallicity) 3. 结果与讨论。 Oct 14, 2014, 北京 先导b:宇宙结构起源 Spirals 3. 结果与讨论。 HI gas of metal poor galaxies Oct 14, 2014, 北京 先导b:宇宙结构起源 Spirals 结果与讨论。 HI gas of 3. metal poor galaxies Dust-based total gas of metal poor galaxies Oct 14, 2014, 北京 先导b:宇宙结构起源 Spirals HI gas of 3. metal poor galaxies 结果与讨论。 Dust-based total gas of metal poor galaxies Theoretical models Oct 14, 2014, 北京 先导b:宇宙结构起源 A much higher molecular gas fraction is seen than 3. 结果与讨论。 models’ predictions. Oct 14, 2014, 北京 先导b:宇宙结构起源 Nature News & Views: Nov 26, 2014 国家天文台 3. Star formation at low metallicity: : planned projects. What suppresses star formation? A large reservoir of molecular gas. Searching for CO emission (IRAM 30 m). Searching for warm H2 emission (Subaru 8 m?). Characterizing the kinematics. Ionized gas kinematics. molecular gas kinematics. Nov 26, 2014 国家天文台 4. Other “extreme” galaxies A large reservoir of warm molecular gas in 3C 326 (Ogle et al. 2007, ApJ, 668, 699). 3C 326 Nov 26, 2014 国家天文台 4. Other “extreme” galaxies Jet driven turbulence may inhibit star formation (Guillard et al. 2014, arXiv:1410.6155) Nov 26, 2014 国家天文台 4. Other “extreme” galaxies ALMA observations CO (6-5) of a merger NGC 1614. Nov 26, 2014 国家天文台 4. Other “extreme” galaxies Xu, C. K. et al. 2014, ApJ, arXiv:1411.1111 Nov 26, 2014 国家天文台 A summary • Besides gas, factors such as existing stars, metallicities, radio jets and mergers, also likely play roles in regulating star formation. • Star formation law is not a universal “law”. Nov 26, 2014 国家天文台 Nov 26, 2014 国家天文台
© Copyright 2024 ExpyDoc