Palestine Journal of Mathematics Vol. 4(1) (2015) , 57–64 © Palestine Polytechnic University-PPU 2015 A SUBCLASS OF MULTIVALENT MEROMORPHIC FUNCTIONS ASSOCIATED WITH ITERATIONS OF THE CHO-KWON-SRIVASTAVA OPERATOR Trailokya Panigrahi Communicated by S.P Goyal MSC 2010 Classifications: 30C45. Keywords and phrases: Meromorphic functions, Multivalent functions, Cho-Kwon-Srivastava operator, Subordination, Hadamard product. Abstract. Let form: P p denote the class of meromorphically multivalent functions f (z ) of the ∞ f (z ) = X 1 + ak−p z k−p p z (p ∈ N := {1, 2, 3, · · · }) k=1 which are analytic in the punctured open unit disk U∗ = {z : 0 < |z| < 1}. In this paper, by making use of a meromorphic analogue of the Cho-Kwon-Srivastava operator and its iterations, a new subclass of meromorphic p-valent functions is introduced. Inclusion theorems and other properties of these function class are studied. 1 Introduction and Definition Let P p denote the class of functions of the form: ∞ f (z ) = X 1 ak−p z k−p + p z (p ∈ N := {1, 2, 3, · · · }) (1.1) k=1 which are analytic in the punctured open unit disk U∗ = {z : z ∈ C and 0 < |z| < 1} = U \ {0}. P P For functions f ∈ p given by (1.1) and g ∈ p given by ∞ X 1 bk−p z k−p g (z ) = p + z (z ∈ U∗ ), k=1 we define the Hadamard product (or convolution) of f and g by ∞ (f ∗ g )(z ) = X z p f (z ) ? z p g (z ) 1 := p + ak−p bk−p z k−p = (g ∗ f )(z ) p z z (z ∈ U∗ ), k=1 where ? denotes the usual Hadamard product (or convolution) of analytic functions. Let f (z ) and g (z ) be analytic in U. We say that the function f (z ) is subordinate to g (z ), if there exists a function w(z ) analytic in U with w(0) = 0 and |w(z )| < 1 such that f (z ) = g (w(z )). In such a case, we write f (z ) ≺ g (z ) (z ∈ U). Furthermore, if the function g is univalent in U, then (see [6, 12, 20]) f (z ) ≺ g (z ) (z ∈ U) ⇐⇒ f (0) = g (0) and f (U) ⊂ g (U). Liu and Srivastava [10] studied meromorphic analogue of the Carlson-Shaffer operator [4] by introducing the function φp (a, c; z ) given by φp (a, c; z ) := ∗ 2 F1 (a, 1; c; z ) zp (z ∈ U , a ∈ C, c ∈ C \ ∞ =: − Z− 0 , Z0 X (a)k 1 + z k−p p z (c)k k=1 := {0, −1, −2, · · · }) (1.2) 58 Trailokya Panigrahi where 2 F1 (a, 1; c; z ) is the Gauss hypergeometric series and (λ)k is the Pochhammer symbol (or shifted factorial) given by ( 1 (k = 0) Γ(λ + k ) (λ)k = = Γ(λ) λ(λ + 1)....(λ + k − 1) (k ∈ N). Recently, Mishra et al. [13] (see also [16]) considered the function φ†p (a, c; z ), the generalized multiplicative inverse of φp (a, c; z ) given by the relation φp (a, c; z ) ∗ φ†p (a, c; z ) = z p (1 1 − z )λ+p ∗ (a, c ∈ C \ Z− 0 , λ > −p; z ∈ U ). (1.3) Note that if λ = −p +1, then φ†p (a, c; z ) is the inverse of φp (a, c; z ) with respect to the PHadamard P n,m product ∗. Using this function they introduced the following operator Iλ,p (a, c) : p −→ p defined by n m ∞ X 1 (λ + p)k (c)k p − kt n,m ak−p z k−p Iλ,p (a, c)f (z ) = p + z (a)k (1)k p k=1 (z ∈ U∗ , t ≥ 0, m, n ∈ N0 = N ∪ {0}). (1.4) n,m The operator Iλ,p (a, c) is obtained by taking compositions of m-iterations of the combinations operator tz C t f (z ) = (1 − t)f (z ) + (−f (z ))0 p with n-iterations of the operator Lλp (a, c)f (z ) = φ†p (a, c; z ) ∗ f (z ). n,m The operator Iλ,p (a, c) generalizes several previously studied familiar operators (for details, see [13, 16]). It is easily verify from (1.4) that n,m z (Iλ,p (a, c)f )0 (z ) = p p n,m+1 n,m (1 − t)Iλ,p (a, c)f (z ) − Iλ,p (a, c)f (z ). t t (1.5) Here we recall that the holomorphic analogue of the function φ†p (a, c; z ) if the function φ†p (a, c; z ) given by the relation z p 2 F1 (a, 1; c; z ) ∗ φ†p (a, c; z ) := zp (1 − z )λ+p (a, c ∈ C \ Z− 0 , λ > −p; z ∈ U) and the corresponding transform defined by Lλp (a, c)f (z ) = φ†p (a, c; z ) ∗ f (z ) were studied by Cho, Kwon and Srivastava [5]. The transform Lλp (a, c) is popularly known as the Cho-Kwon-Srivastava operator (see, for detail [7, 18, 21]). Few literature is available on systematic study of successive iterations of certain transforms on classes of meromorphic as well as analytic functions (see e.g., [1, 2, 13, 16, 19]). Furthermore, n,m using the operator Iλ,p (a, c), Panigrahi [17] and Mishra and Soren [14] have investigated its various interesting properties ( for recent expository work on meromorphic functions see [3, 8, 9, 22]). Motivated by the aforementioned work, in this paper we introduce a new subclass of meromorphic functions and investigate inclusion theorems and other properties of a certain class of meromorphically p-valent functions, which are defined by making use of a meromorphic analogue of the Cho-Kwon-Srivastava operator and its iterations given by (1.4). P 2πi Throughout this paper, we assume that p, l ∈ N, l = e l , and for f ∈ p , we have n,m fp,l (λ, a, c; z ) l−1 1 X jp n,m l Iλ,p (a, c)f (jl z ) = l j =0 n m 1 (λ + p)l (c)l p − lt = p+ al−p z l−p + · · · . z (a)l (1)l p (1.6) A SUBCLASS OF MULTIVALENT MEROMORPHIC FUNCTIONS 59 Note that the series we consider is a gap series, each nonzero coefficient appearing after l gaps. For l = 1, it follows from (1.6) that n,m n,m fp, 1 (λ, a, c; z ) = Iλ,p (a, c)f (z ). Let P denote the class of functions of the form: p(z ) = 1 + b1 z + b2 z 2 + · · · , which are analytic and convex in U satisfying the condition <(p(z )) > 0 (z ∈ U). P n,m By making use of the operator Iλ,p (a, c), we now define a new subclass of p as follows: P n,m Definition 1.1. A function f (z ) ∈ p is said to be in the class Tp,l (λ, a, c, α, β ; h) if it satisfies the following subordination conditions: h i n,m n,m+1 n,m z (1 + α)(Iλ,p (a, c)f )0 (z ) + α(Iλ,p (a, c)f )0 (z ) z (Iλ,p (a, c)f )0 (z ) h i − (1 − β ) ≺ h(z ), −β n,m pfp,l (λ, a, c; z ) p (1 + α)f n,m (λ, a, c; z ) + αf n,m+1 (λ, a, c; z ) p,l p,l (1.7) (a, c ∈ C \ Z− 0 , λ > −p, n, m ∈ N0 , α > 0, β ≥ 0, h ∈ P ; z ∈ U). When n = 1 we use the following notation : 1,m m Tp,l (λ, a, c, α, β ; h) := Tp,l (λ, a, c, α, β ; h). 1+Az In particular for l = 1, β = 0 and h(z ) = 1+ Bz (−1 ≤ B < A ≤ 1) in (1.7), we get the following function class. ) ( n,m X z (Iλ,p (a, c)f )0 (z ) 1 + Az n,m ≺ , (z ∈ U) . (1.8) Tp (λ, a, c, α, A, B ) = f ∈ :− n,m pIλ,p (a, c)f (z ) 1 + Bz p 2 Preliminaries We need the following lemmas for our present investigation: Lemma 2.1. (see [11]) Let β, γ ∈ C. Suppose that φ(z ) is convex and univalent in U with φ(0) = 1, <(βφ(z ) + γ ) > 0 (z ∈ U). If p(z ) is analytic in U with p(0) = 1, then the following subordination: zp0 (z ) ≺ φ(z ) βp(z ) + γ p(z ) + (z ∈ U), implies that p(z ) ≺ φ(z ). Lemma 2.2. (see [15]) Let β, γ ∈ C. Suppose that φ(z ) is convex and univalent in U with φ(0) = 1, <(βφ(z ) + γ ) > 0 (z ∈ U). Also let q (z ) ≺ φ(z ) (z ∈ U). If p(z ) ∈ P and satisfies the following subordination: p(z ) + zp0 (z ) ≺ φ(z ) βq (z ) + γ then p(z ) ≺ φ(z ). n,m Lemma 2.3. Let f ∈ Tp,l (λ, a, c, α, β ; φ). Then 0 0 0 n,m n,m+1 n,m z (1 + α) fp,l (λ, a, c; z ) + α fp,l (λ, a, c; z ) z fp,l (λ, a, c; z ) h i −β −(1−β ) ≺ φ(z ). n,m n,m n,m+1 pfp,l (λ, a, c; z ) p (1 + α)fp,l (λ, a, c; z ) + αfp,l (λ, a, c; z ) (2.1) 60 Trailokya Panigrahi Furthermore, if φ(z ) ∈ P with 1 p 2p < p− − − pφ(z ) >0 β αt t then − 0 n,m z fp,l (λ, a, c; z ) n,m pfp,l (λ, a, c; z ) (α, β, t > 0; z ∈ U), ≺ φ(z ) (z ∈ U). (2.2) (2.3) Proof. From (1.6), we have l−1 n,m fp,l (λ, a, c, ; jl z ) = 1 X kp n,m l Iλ,p (a, c)f (kl +j z ) l k=0 n,m =−jp fp,l (λ, a, c; z ) l and (j = 0, 1, ...l − 1), l−1 0 0 1 X (p+1)k n,m n,m fp,l (λ, a, c; z ) = l Iλ,p (a, c)f (kl z ). l (2.4) (2.5) k=0 Replacing m by m + 1 in (2.4) and (2.5) respectively, we can get n,m+1 n,m+1 fp,l (λ, a, c; jl z ) = −jp fp,l (a, c; z ) l and l−1 0 0 1 X (p+1)k n,m+1 n,m+1 l Iλ,p (a, c)f (kl z ). fp,l (λ, a, c; z ) = l (2.6) (2.7) k=0 From (2.4) to (2.7) we can get 0 0 0 n,m+1 n,m n,m (λ, a, c; z ) z (1 + α) fp,l (λ, a, c; z ) + α fp,l z fp,l (λ, a, c; z ) h i −β − (1 − β ) n,m n,m n,m+1 pfp,l (λ, a, c; z ) p (1 + α)fp,l (λ, a, c; z ) + αfp,l (λ, a, c; z ) 0 0 n,m n,m+1 k k (1 + α) Iλ,p (a, c)f (l z ) + α Iλ,p (a, c)f (l z ) l−1 1X h i =− β n,m n,m+1 l p (1 + α)fp,l (λ, a, c; kl z ) + αfp,l (λ, a, c; kl z ) k=0 0 l−1 k z I n,m (a, c)f (kl z ) X l λ,p (1 − β ) . − n,m l pfp,l (λ, a, c; kl z ) k=0 kl z (2.8) n,m Since f ∈ Tp,l (λ, a, c, α, β ; φ), it follows that 0 0 0 n,m n,m+1 k k k n,m l z (1 + α) Iλ,p (a, c)f (l z ) + α Iλ,p (a, c)f (l z ) kl z Iλ,p (a, c)f (kl z ) h i −β −(1−β ) ≺ φ(z ). n,m n,m n,m+1 pfp,l (λ, a, c; kl z ) p (1 + α)fp,l (λ, a, c; kl z ) + αfp,l (λ, a, c; kl z ) (2.9) Since φ(z ) is convex and univalent in U, the assertion (2.1) of Lemma 2.3 follows from (2.8) and (2.9). From (1.5) and (1.6) we obtain 0 p n,m n,m+1 z fp,l (λ, a, c; z ) + fp,l (λ, a, c; z ) = t p t (1 l−1 − t) X pk n,m p(1 − t) n,m l Iλ,p (a, c)f (kl z ) = fp,l (λ, a, c; z ). l t k=0 (2.10) n,m Let f ∈ Tp,l (λ, a, c, α, β ; φ) and suppose that ψ (z ) = − 0 n,m z fp,l (λ, a, c; z ) n,m pfp,l (λ, a, c; z ) (z ∈ U). (2.11) A SUBCLASS OF MULTIVALENT MEROMORPHIC FUNCTIONS 61 Clearly ψ (z ) is analytic in U and ψ (0) = 1. It follows from (2.10) and (2.11) that 1 − t + tψ (z ) = n,m+1 fp,l (λ, a, c; z ) n,m fp,l (λ, a, c; z ) . (2.12) Taking logarithmic differentiation on both sides of (2.12) and making use of (2.10) and (2.11) in the resulting equation, we get 0 n,m+1 n,m z fp,l (λ, a, c; z ) = − ([p − pt + ptψ (z )]ψ (z ) − tzψ 0 (z )) fp,l (λ, a, c; z ). (2.13) Now it follows from (2.1) and (2.11) to (2.13) that 0 0 0 n,m n,m+1 n,m z (1 + α) fp,l (λ, a, c; z ) + α fp,l (λ, a, c; z ) z fp,l (λ, a, c; z ) h i −β − (1 − β ) n,m n,m n,m+1 pfp,l (λ, a, c; z ) p (1 + α)fp,l (λ, a, c; z ) + αfp,l (λ, a, c; z ) (1 + α)ψ (z ) + α {−t + tψ (z )}ψ (z ) − pt zψ 0 (z ) =β + (1 − β )ψ (z ) (1 + α) + α(1 − t + tψ (z )) = ψ (z ) + zψ 0 (z ) 1 β p− p αt − 2p t ≺ φ(z ) − pψ (z ) (z ∈ U). (2.14) Since < 1 β p 2p p− − − pφ(z ) >0 αt t (α, β, t > 0, z ∈ U), the assertion (2.3) of Lemma 2.3 follows by virtue of (2.14) and Lemma 2.1. This completes the proof of Lemma 2.3. 3 Main Results Theorem 3.1. Let φ(z ) ∈ P be such that 1 < β p 2p p− − − pφ(z ) >0 αt t (α, β, t > 0, z ∈ U). Then n,m n,m Tp,l (λ, a, c, α, β ; φ(z )) ⊂ Tp,l (λ, a, c, α; φ(z )) n,m Proof. Let f ∈ Tp,l (λ, a, c, α, β ; φ(z )) and suppose that q (z ) = − 0 n,m z Iλ,p (a, c)f (z ) n,m pfp,l (λ, a, c; z ) (z ∈ U). (3.1) Clearly q (z ) is analytic in U and q (0) = 1. It follows from (1.5) and (3.1) that 1 1 n,m+1 n,m n,m q (z )fp,l (λ, a, c; z ) = − (1 − t)Iλ,p (a, c)f (z ) + Tλ,p (a, c)f (z ). t t (3.2) Differentiating both sides of (3.2) with respect to z and using (3.1) in the resulting equation, we obtain 0 0 n,m n,m+1 z I z f ( λ, a, c ; z ) ( a, c ) f (z ) p,l λ,p p p zq 0 (z ) + − (1 − t) q (z ) = . (3.3) n,m n,m fp,l (λ, a, c; z ) t t pfp,l (λ, a, c; z ) Making use of (2.11), (2.12), (3.1) and (3.2) in (1.7) yield 62 Trailokya Panigrahi h i n,m n,m+1 n,m z (1 + α)(Iλ,p (a, c)f )0 (z ) + α(Iλ,p (a, c)f )0 (z ) z (Iλ,p (a, c)f )0 (z ) h i − (1 − β ) −β n,m n,m n,m+1 pfp,l (λ, a, c; z ) p (1 + α)fp,l (λ, a, c; z ) + αfp,l (λ, a, c; z ) 0 p (1 + α)q (z ) − αt p zq (z ) + p − t − pψ (z ) q (z ) =β + (1 − β )q (z ) (1 + α) + α(1 − t + tψ (z )) = q (z ) + Since zq 0 (z ) 1 β p− p αt − p 2p p− − − pφ(z ) >0 αt t 1 < β 2p t ≺ φ(z ) − pψ (z ) (z ∈ U). (3.4) (α, β, t > 0, z ∈ U), by virtue of Lemma 2.3, we have ψ (z ) = − 0 n,m z fp,l (λ, a, c; z ) n,m pfp,l (λ, a, c; z ) ≺ φ(z ) (z ∈ U). Thus, by (3.4) and Lemma 2.2, we find that q (z ) ≺ φ(z ) (z ∈ U), which implies n,m n,m Tp,l (λ, a, c, α, β ; φ(z )) ⊂ Tp,l (λ, a, c, α; φ(z )) The proof of Theorem 3.1 is thus completed. For n = 1, Theorem 3.1 takes the following form: Corollary 3.2. Let φ(z ) ∈ P be such that p 2p 1 p− − − pφ(z ) >0 < β αt t (α, β, t > 0; z ∈ U). Then m m Tp,l (λ, a, c, α, β, φ) ⊂ Tp,l (λ, a, c, α, φ). Taking φ(z ) = 1+Az 1+Bz (−1 ≤ B < A ≤ 1) in Theorem 3.1, we get the following result. Corollary 3.3. Let −1 ≤ B < A ≤ 1 and 1+A 1 2 < 1− − 1+B αt t (α, t > 0). Then n,m n,m Tp,l (λ, a, c, α, β, A, B ) ⊂ Tp,l (λ, a, c, α, A, B ). Theorem 3.4. Let h(z ) ∈ P and 0 ≤ β1 < β2 be such that 1 p 2p < p− − − ph(z ) > 0 (α, β, t > 0, z ∈ U). β2 αt t Then n,m n,m Tp,l (λ, a, c, α, β2 ; h(z )) ⊂ Tp,l (λ, a, c, α, β1 ; h(z )). n,m Proof. Let f ∈ Tp,l (λ, a, c, α, β2 ; h(z )). Then by Definition 1.1, we have h i n,m n,m+1 n,m z (1 + α)(Iλ,p (a, c)f )0 (z ) + α(Iλ,p (a, c)f )0 (z ) z (Iλ,p (a, c)f )0 (z ) h i −β2 −(1−β2 ) ≺ h(z ). n,m n,m n,m+1 pfp,l (λ, a, c; z ) p (1 + α)fp,l (λ, a, c; z ) + αfp,l (λ, a, c; z ) (3.5) 63 A SUBCLASS OF MULTIVALENT MEROMORPHIC FUNCTIONS We define the function q (z ) by the following: q (z ) = − 0 n,m z Iλ,p (a, c)f (z ) n,m pfp,l (λ, a, c; z ) (z ∈ U). Therefore by Theorem 3.1, we get n,m n,m Tp,l (λ, a, c, α, β2 ; h(z )) ⊂ Tp,l (λ, a, c, α, β1 ; h(z )). Hence, q (z ) ≺ h(z ) (z ∈ U). (3.6) We also observe that the following identity holds: h i n,m n,m+1 n,m z (1 + α)(Iλ,p (a, c)f )0 (z ) + α(Iλ,p (a, c)f )0 (z ) z (Iλ,p (a, c)f )0 (z ) h i − (1 − β1 ) −β1 n,m n,m n,m+1 pfp,l (λ, a, c; z ) p (1 + α)fp,l (λ, a, c; z ) + αfp,l (λ, a, c; z ) h i n,m n,m+1 0 0 n,m z (1 + α )( I ( a, c ) f ) ( z ) + α ( I ( a, c ) f ) ( z ) z (Iλ,p (a, c)f )0 (z ) λ,p λ,p β1 β1 h i = −β2 + 1− − (1 − β2 ) q (z ). n,m n,m n,m+1 β2 pfp,l (λ, a, c; z ) β2 p (1 + α)fp,l (λ, a, c; z ) + αfp,l (λ, a, c; z ) Since 0 ≤ β1 β2 < 1, and h(z ) is convex univalent in U, we conclude from (3.5) and (3.6) that h i n,m n,m+1 n,m z (1 + α)(Iλ,p (a, c)f )0 (z ) + α(Iλ,p (a, c)f )0 (z ) z (Iλ,p (a, c)f )0 (z ) h i −(1−β1 ) −β1 ≺ h(z ) n,m n,m n,m+1 pfp,l (λ, a, c; z ) p (1 + α)fp,l (λ, a, c; z ) + αfp,l (λ, a, c; z ) Thus n,m f (z ) ∈ Tp,l (λ, a, c, α, β1 ; h). The proof of Theorem 3.4 is completed. Acknowledgement: The author thanks the reviewer for many useful suggestions for revision which improved the content of the manuscript. References [1] F. M. Al-Oboudi and K. A. Al-Oboudi, On class of analytic functions related to conic domains, J. Math. Anal. Appl. 339, 665-667 (2008). [2] F. M. Al-Oboudi and K. A. Al-Oboudi, Subordination results for classes of analytic functions related to conic domains defined by a fractional operator, J. Math. Anal. Appl. 354(2), 412-420 (2009). [3] W. G. Atshan, H. J. Mustafa and E. K. Mouajeeb, A linear operator of a new class of meromorphic multivalent functions, J. Asian Scientific Research 3(7), 734-746 (2013). [4] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15, 737-745 (1984). [5] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292, 470-483 (2004). [6] P. L. Duren, Univalent Functions, Graduate Texts in Mathematics; 259, Springer-Verlag, New York, (1983). [7] F. Ghanim and M. Darus, Some properties on a certain class of meromorphic functions related to ChoKwon-Srivastava operators, Asian-European J. Math. 5(4) , Art. ID 1250052 (2012) . [8] S. P. Goyal and J. K. Prajapat, A new class of meromorphic multivalent functions involving certain linear operators, Tamsui Oxford J. Math.Sci. 25(2), 167-178 (2009). [9] S. P. Goyal and R. Kumar, Some inclusion properties for new subclasses of meromorphic p-valent strongly starlike and strongly convex functions associated with the El-Ashwah operator, Acta Univ. Apulensis 23, 107-115 (2010). [10] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259, 566-581(2001) [11] S. S. Miller and P. T. Mocanu, On some classes of first order differential subordination, Michigan Math. J. 32, 185-195 (1985). (z ∈ U). 64 Trailokya Panigrahi [12] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, in: Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York, (2000). [13] A. K. Mishra, T. Panigrahi and R. K. Mishra, Subordination and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking, Math. Comput. Modelling 57, 945962 (2013). [14] A. K. Mishra and M. M. Soren, Certain subclasses of multivalent meromorphic functions involving itertions of the Cho-Kwon-Srivastava transform and its combinations, Asian-European J. Math. ( to appear). [15] K. S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Asutral. Math 32, 321-330 (1985) . [16] T. Panigrahi, On Some Families of Analytic Functions Defined Through Subordination and Hypergeometric Functions, Ph.D Thesis, Berhmapur University, Berhampur, (2011). [17] T. Panigrahi, Convolution properties of multivalent functions associated with Cho-Kwon-Srivastava operator, Southeast Asian Bull. Math. (to appear). [18] J. Patel, N. E. Cho and H. M. Srivastava, Certain subclasses of multivalent functions associated with a family of linear operators, Math. Comput. Modelling 43, 320-338 (2006) . [19] H. M. Srivastava, A. K. Mishra and S. N. Kund, Certain classes of analytic functions associated with iterations of the Owa-Srivastava operator, Southeast Asian Bull. Math. 37, 413-435 (2013). [20] H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore, (1992). [21] Z.-G. Wang, H.-T. Wang and Y. Sun, A class of multivalent non-bazelevic functions involving the ChoKwon-Srivastava operator, Tamsui Oxford J. Math. Sci. 26(1), 1-19 (2010). [22] Z.-G. Wang, Y. Sun and Z.-H. Zhang, Certain classes of meromorphic multivalent functions, Comput. Math. Appl. 58, 1408-1417 (2009) . Author information Trailokya Panigrahi, Department of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar751024, Odisha, India. E-mail: [email protected] Received: June 12, 2014. Accepted: June 30, 2014.
© Copyright 2024 ExpyDoc