Quantum Critical Scaling of Fidelity in 2D BCS-like models Mariusz Adamski and Janusz Jedrzejewski ˛ Institute for Theoretical Physics, University of Wrocław Results Introduction Using ground-state fidelity dν < 2 (A) Critical endpoint: 103 105 δ =10−6 101 10-1 c =0 c =1 c =2 c =0 c =1 c =2 102 ∼ L2 ∼ δ1 10-1 10-3 −lnF Our objectives verifying known scaling laws in small- and macroscopic systems in the range of their validity (dν < 2) comparing exponents of power-like behaviour with obtained earlier critical indices beyond that range L =103 −lnF We are investigating 2D spinful fermion model BCS-like interactions Quantum critical points 10-5 Consistent10-4with ν = 1/2 ∼ L4 10-7 ξ 10-9 1 10 102 104 103 L 105 10-7 -9 10 The model δ(ξ = L) 10-7 10-6 10-5 δ 108 2|J| t † † H =− al,σ al+ei,σ + h.c. − µal,σ al,σ + 2 l,σ,i X J † † † † − al,↑al+ei,↓ − al,↓al+ei,↑ + h.c. 2 105 see ref. [1] 1 2 where σ ∈ {↑, ↓}, i ∈ {1, 2} and ei are unit vectors along the axes. k,i ∼ L2 ∼ L ≈ 2.307 ∼ L4 10-4 1 10 Pairing interaction εk = − cos k1 − cos k2 + µ. ξdiag 104 103 L √ 1 + J2 ≈ 2 , |µJ| ∼ δ2 10-1 105 ∼ δ ≈ 1.146 δ(ξdiag = L) δ(ξoffdiag = L) 10-4 -9 10 10-8 10-7 10-6 √ √ 2 4 1 + J2 ξoffdiag ≈ p 2 |µ| sin Fails 10-5 δ 10-4 105 101 105 L =103 c =0 c =1 c =2 ∼ L2 −lnF −lnF ξ ≈ 106 ∼ L4 10-5 Wrongly suggests 10-4 ν = 1/2 10-7 Phase diagram 10-9 1 10 102 J L 10-8 10-7 δ(ξ = L) 10-6 10-5 δ 10-4 p 2 − |µ| ≈ |µJ| see ref. [1] L =103 c =0 c =1 c =2 105 L2 ∼ L ≈ 2.285 −lnF Wrongly suggests ν=1 10-4 ∼ L2 102 νdiag = 1/2 νoffdiag = 1/2 104 103 L ∼ δ1 10-3 Wrongly suggests ν = 1/2 10-7 105 10-11 -9 10 √ ξdiag Critical lines c =0 c =1 c =2 101 10-1 µ 10-2 dν > 2 −lnF (A) 10-3 109 102 10-7 1 10 νdiag = 1 νoffdiag = 1 ξoffdiag δ =10−4 2 (D) √ p 2 4 − µ2 ≈ , 2 |µJ| 10-7 -9 10 108 105 (C) 105 ∼ δ2 (D) Multicritical point: νdiag = 1 νoffdiag = 1/2 νdiag = 2 νoffdiag = 3/2 104 103 ξdiag (B) ∼ δ1 10-1 10-3 [1] c =0 c =1 c =2 102 10-1 i 10-2 dν = 2 δ =10−6 103 10-3 see ref. [1] 1 2 arctan |J| (C) Across J = 0 critical line, µ = 1: Dispersion relation after Bogoliubov transformation v 2 u X u t 2 Ek = ε k + J cos ki Multicritical point ∼ δ ≈ 0.858 102 Correctly identifies νoffdiag = 1/2 102 ξdiag c =0 c =1 c =2 105 ξoffdiag Momentum-space Hamiltonian X † X † † εkckσ ck,σ − J cos ki ck,↑c−k,↓ + h.c. H = k,σ Kinetic term c =0 c =1 c =2 −lnF 10-1 dνoffdiag < 2 L =104 102 l,i 10-2 108 δ =10−3 10-3 −lnF X 10-4 2 (B) Across µ = 0 critical line, J = 1: Real-space Hamiltonian −2 10-8 √ ξdiag ≈ ξoffdiag ≈ ∼ δ2 2 ≈ , |µJ| 10-8 √ ξoffdiag ≈ p ∼ δ2 10-7 δ 2 10-6 10-5 see ref. [1] |µ||J| Observations As long as the condition dν < 2 holds, the scaling laws are satisfied, correctly reproducing critical indices If dν ≥ 2, the exponents characterising power-like behaviour of − ln Fe do not match critical indices obtained from correlation functions Fidelity Definition Conclusions − + Fe(λ, δ) = hg(λ − eδ)|g(λ + eδ)i ≡ g g Small system (L ξ ) [2, 3, 4] Macroscopic system (L ξ )[2, 3, 5] − ln Fe(λc + cδe, δ) ∼ L2/ν δ 2 − ln Fe(λc + cδe, δ) ∼ Ldδ dν Ae(c) In both cases dν < 2 In our case − ln Fe = − X Typically, in systems with dimension d ≥ 2, the ground-state fidelity does not allow for determining critical indices. ln f (k) k − + − + 2 εk εk + J J cos k 1 f (k) = 1+ 2 Ek−Ek+ Scaling function References [1] Mariusz Adamski, Janusz Jedrzejewski, ˛ and Taras Krokhmalskii. Quantum phase transitions and ground-state correlations in BCS-like models [arXiv:1311.1080]. [3] Marek M. Rams and Bogdan Damski. Quantum fidelity in the thermodynamic limit Phys. Rev. Lett. 106, 055701 (2011). [4] A. Fabricio Albuquerque, Fabien Alet, Clément Sire, and Sylvain Capponi. [2] Marek M. Rams and Bogdan Damski. Quantum critical scaling of fidelity susceptibility Scaling of ground-state fidelity in the thermodynamic Phys. Rev. B 81, 064418 (2010). limit: XY model and beyond [5] Lorenzo Campos Venuti and Paolo Zanardi. Phys. Rev. A 84, 032324 (2011). Quantum critical scaling of the geometric tensors Phys. Rev. Lett. 99, 095701 (2007). 50th KARPACZ WINTER SCHOOL OF THEORETICAL PHYSICS , 2-9 MARCH 2014, KARPACZ, POLAND Mail: [email protected]
© Copyright 2024 ExpyDoc