Heavy-Ion Double Charge Exchange study ! via 12C(18O,18Ne)12Be reaction Motonobu Takaki! (CNS, The University of Tokyo)! ! H. Matsubara2, T. Uesaka3, N. Aoi4, M. Dozono1, T. Hashimoto4, T. Kawabata5, S. Kawase1, K. Kisamori1, Y. Kubota1, C.S. Lee1, J. Lee3, Y. Maeda6, S. Michimasa1, K. Miki4, S. Ota1, M. Sasano3, T. Suzuki4, K. Takahisa4, T.L. Tang1, A. Tamii4, H. Tokieda1, K. Yako1, R. Yokoyama1, J. Zenihiro3, and S. Shimoura1! 1 ! CNS, The University of Tokyo! 2 National Institute of Radiological Science (NIRS)! 3 RIKEN Nishina Center! 4 Research Center for Nuclear Physics, Osaka University! 5 Department of Physics, Kyoto University! 6 Department of Applied Physics, University of Miyazaki 2nd conference on ARIS 2014, June 2nd 2014 Double Charge eXchange (DCX) reaction Probe for unstable nuclei! • Using stable target with ΔTz = 2! Powerful tool to investigate IV Double Giant Resonances! • DIAS, DIVDR… 12C(π-,π+)12Be J.E. Ungar et al., PLB, 144 333 (1984) S. Mordechai et al., PRL 60, 408 (1988). 2 HIDCX with Missing mass method ! at Intermediate energy Heavy-ion! 12C(14C,14O)12Be! • Double Spin and/or Isospin flip (ΔS=2, ΔTz=2)! Counts Missing mass method! Sn Elab=24A MeV • measure All excitation energy region on a same footing! 25 Intermediate energy (~ 100MeV/u)! • ΔL sensitivity of angular distributions! - multipole assignment We performed 12C(18O,18Ne) reaction experiment! in normal kinematics at 80 MeV/nucleon. (nb/sr/(0.5 MeV)) - simple reaction mechanism! 15 10 5 0 Ex W. ! Oertzen et al.," NPA, 588 129c (1995) d2σ/dΩc.m.dE • direct reaction process dominance! 20 30 24Mg(18O,18Ne)24Ne ! at 76A MeV 20 10 0 1 J. Blomgren et al.! PLB, 362 34 (1995) 0 0 24Ne 5 10 15 20 excitation energy (MeV) 3 (18O,18Ne) reaction Ground states of 18O and 18Ne are among the same super-multiplet.! • simple transition process! • large transition probability! ! B(GT) ~ 0.07 ! ! ! B(GT)=0.11 τ τ 18O στ B(GT)=3.15 18F στ B(GT)=1.05 B(GT) ~ 0 18Ne A primary 18O beam is employed! • high intensity (> 10 pnA)! Experiment can be performed at RCNP with GR spectrometer ! • high quality data with high energy resolution 4 Setup of the experiment Good PID resolution Energy resolution = 1.2 MeV(FWHM) 18 18Ne 1400 F 17 F ΔE in PL Scint. 17 O E (arb. unit) 1200 1000 Grand Raiden 18Ne 15 O 14 O 15 N 14 N 13 N 13 800 12C O 16 C 12 C 11 target (2.2 mg/cm2) 12 N 600 1.7 C 11 1.8 1.9 2 2.1 B 2.2 A/Q 1.7 1.8 1.9 2.0 2.1 2.2 18O MWDCs and plastic scinti. beam beam: 18O Energy: 80A MeV ΔE: ~ 1 MeV intensity: 25 pnA A/Q 2.3 18Ne Ring Cyclotron Facility, ! Research Center for Nuclear Physics, ! Osaka University 5 Successful result ! ! ! 2+/3- ! ! ! ! ! Bound and unbound states were observed in one-shot measurement.! The 2.2 MeV peak has a larger cross section than the g.s.! Different angular distribution of the 4.5 MeV peak. 6 Probing of the configuration mixing Mixing degree between p- and sd-shell components in 0+ states of 12Be! ! sd ! } mixing 1p1/2 ! 1p3/2 ! (p)2 dominance ! ! 1s1/2 proton 12Be neutron ! The cross section for the two 0+ states at forward angle! ➡dominated by double Gamow-Teller transition(ΔL=0, ΔS=2, ΔT=2).! ➡mainly reflect the p-shell contribution. 7 Evaluation of p-shell contribution to 0+ states of 12Be Assumption:! 1. 12C g.s. has only p-shell configuration. ! 2. The transition occurs in the 0hω relative cross section between 0+g.s. and 0+2! ←→ ratio of p-shell contributions + (02 )/ + (0g.s. ) = 2.4(2) only statistical error Similar spectroscopic value with earlier works p-shell contribution in 0 0+ 0+ 0 methods 12 Meharchant 25 60 2.4±0.5 Fortune 32 68 2.1 SM Barker 31 42 1.4 SM R. Meharchant et al., PRL 122501, 108 (2012) H. T. Fortune et al., PRC, 024301, 74 (2006) F. C. Barker, Journal of Physics G, 2(4), L45 (1976) 8 Conclusion ! ! ! 2+/3- ! ! ! ! ! ! The 2.2 MeV peak has a larger cross section than the g.s.! • The p1/2 component dominantly contributes to the 0+2 state.! The different angular distribution of the 4.5 MeV peak! • The HIDCX reaction can assign multipolarities. 9 Summary HIDCX reactions are unique probe for light unstable nuclei and IV double giant resonances, especially spin-flip excitations. ! The HIDCX 12C(18O,18Ne) reaction experiment was performed.! • Three clear peaks were observed at Ex=0.0, 2.2 and 4.5 MeV.! • Larger cross section for the 12Be(0+2) state reflects the degree of the p-shell contribution for the two 0+ states in 12Be.! • The different angular distributions of the cross sections suggest a sensitivity to multipolarities.! ! This study shows that spectroscopic studies with the HIDCX reaction are a valid and feasible! Thank you for your attention. Counts Backup 12C(14C,14O)12Be! 12C(π+,π-)12O Counts Elab=24A MeV 0 10 Ex S. Mordechai et al.,! PRC, 32 999 (1985) 20 30 25 20 15 10 5 0 Ex W. !Oertzen et al.,! NPA, 588 129c (1995) 11 Test Experiment to prove experimental feasibility 18O(12C,12Beγ)18Ne(gnd) Counts (A.U.) Excitation Energy Counts (A.U.) Decay Time 2γ time spectrum 12 decay time Fit 10 decay time constant: 395(+173-92) ns decay time constant: 395+173 -92 ns ⇔ 331 ns in literature 8 18 180 160 18 18 O(12C,12Be) Ne w/o -ray tag w/o γ-tag 6 4 18 O(12C,12Be(0+)) Ne w/ -ray tag × 10 2 18 Ne(gnd) 140 y r a n i 120 100 80 60 2 0 0 m i l BG due to particle e r pmis-identification 200 400 600 800 511keV with γ-tag ×10 t 40 12Be 20 0 -20 511keV -15 -10 -5 0 5 10 15 20 Ex (A.U.) 1000 1200 1400 Time (ns) Time [ns]
© Copyright 2025 ExpyDoc