Proceedings at ESIS TC4 Conference
14th September 2014
A CONTROLLED MIXED-MODE BENDING
(CMMB) TEST TO INVESTIGATE THE
FRACTURE OF STRUCTURAL ADHESIVE
JOINTS
S. Marzi 1), T. Walander 2), O. Hesebeck 1), M. Brede 1)
1)
Fraunhofer IFAM, Germany
2) University of Skövde
Contact e-mail: [email protected]
WWW.HIS.SE/WALT
Page 1
OUTLINE
SHORT AGENDA
Background
Research idea
Experimental set-up / results
Evaluation
Comparison
Summary
Future work
Questions
WWW.HIS.SE/WALT
[email protected]
Page 2
BACKGROUND
FRACTURE OF ADHESIVE LAYERS
• Ability to predict, and simulate, fracture of adhesive layers
• Substantial work regarding Mode I and Mode II loading,
e.g. thickness, temperature, loading rate, curing time….
• Bonded structures often fail in Mixed mode loading
• Fracture energy essential parameter for strength
WWW.HIS.SE/WALT
[email protected]
Page 3
BACKGROUND
PREVIOUS MIXED MODE STUDIES
LEFM APPROACH
• Unsymmetrical double cantilever beam (UDCB)
•
•
D. Alvarez, et al. Annual Meeting of the Adhesion Society, 2013.
V. Mollon, et al. Structures, vol. 32, (2010)
• Mixed mode bending (MMB)
•
R. JR. and C. JH. AIAA J, vol. 59, pp. 609
• End loaded split (ELS)
•
S. Gowrishankar, et al. Annual-Meeting of the Adhesion Society, 2013.
• Mixed mode flexure (MMF)
•
H. Parvatarredy and D. Dillard. Int. J. Fract., vol. 96, 1999.
• Fixed ratio mixed mode (FRMM)
•
M. Conroy, et al. Annual Meeting of the Adhesion Society, 2013.
• Anti-symmetric FRMM (AFRMM)
•
D. Alvarez, et al. Annual Meeting of the Adhesion Society, 2013.
NOTE: LEFM neglects flexibility of adhesive layer
- not optimal for adhesives giving rise to a large process zone
WWW.HIS.SE/WALT
[email protected]
(Figures taken from Alvarez, et al. 2013)
Page 4
BACKGROUND
PREVIOUS MIXED MODE STUDIES
J-INTEGRAL APPROACH
• Consider flexibility, suggested by e.g.
•
Z. Sou et al. J. of the Mechanics and Physics of Solids, vol. 40 1993
• DCB with uneven bending moments (DCB-UBM)
•
•
B. Sorensen and T. Jacobsen Composite Sc. Tech, vol. 69, 2009.
C. Lundsgaard-Larsen, et al. Eng. Frac. Mech., vol. 75, 2008.
• Mixed mode cantilever beam (MCB)
•
J. Hogberg et al. Int. J.Solids Structures, vol. 44 2007.
• Mixed mode bending (MMB)
•
F. Ducept, et al. Compos Sci Technol, vol. 59, 1999.
WWW.HIS.SE/WALT
[email protected]
Page 5
BACKGROUND
PREVIOUS MIXED MODE STUDIES
MODE MIX DEFINITIONS
• Energy based mode mix definition, e.g.
arctan
J. Hutchinson and Z. Sou, Adv. Appl. Mech., vol. 29, 1992.
• Separation based mode mix definition, e.g.
J. Hogberg et al. Int. J.Solids Structures, vol. 44 2007.
• (Stress based mode mix definition)
,
WWW.HIS.SE/WALT
[email protected]
Page 6
BACKGROUND
PREVIOUS MIXED MODE STUDIES
FRACTURE ENVELOPES
Energy based
peel
F. Ducept et al. I. J. Adhesion & Adhesives 20 2000
Separation based
shear
shear
peel
J. Hogberg et al. Int. J.Solids Structures, vol. 44 2007.
Fracture energy strongly mode mix dependent
WWW.HIS.SE/WALT
[email protected]
Page 7
BACKGROUND
DEFINE ACTUAL MODE MIX?
•
and , i.e. mode mix, changes when
damage initiates in the adhesive layer.
Fracture indicated
by circles
J. Hogberg et al. Int. J.Solids Structures, vol. 44 2007.
WHAT IS THE ACTUAL MODE MIX?
• Mode mix defined in the elastic region, before damage?
• Mode mix defined at fracture?
WWW.HIS.SE/WALT
[email protected]
Page 8
RESEARCH IDEA
CONTROLLED MIXED MODE
BENDING SPECIMEN (CMMB)
• Separation based mode mix definition
arctan
• J-integral approach for evaluation
WWW.HIS.SE/WALT
[email protected]
Page 9
EXPERIMENTAL SET-UP
Custom test machine designed and
built by the authors
Located at Fraunhofer IFAM, Bremen
• PID regulation
• DASY Lab software
Technical data:
• Two regulated 20 kN actuators
• Four 20 kN load cells
• Four incremental shaft encoders
• Two clip gauges
• Linear guide lines
WWW.HIS.SE/WALT
[email protected]
Test for positive Page 10
EXPERIMENTAL SET-UP
COD - MEASUREMENTS
Regulation for constant :
,
arctan
,
WWW.HIS.SE/WALT
[email protected]
tan
Proportional control of
the velocity of the controlled actuator
Page 11
EXPERIMENTAL RESULTS
, THREE EXPERIMENTS
3000
Sum
A
B
C
D
2000
s
F [N]
U [mm]
1000
0
-1000
0.2
4000
0.15
3000
0.1
J [N/m 2]
EX.
0.05
1000
Experiment
Target
0
2000
0
-2000
0
100
200
Time [s]
300
-0.05
0
0.2
0.4
U [mm]
n
0.6
0.8
0
0.2
U
0.4
[mm]
0.6
res
SikaPower 498 adhesive
WWW.HIS.SE/WALT
[email protected]
Page 12
0.8
EXPERIMENTAL RESULTS
EX.
, THREE EXPERIMENTS
8000
12000
0.8
6000
10000
0
J [N/m 2]
0.4
s
F [N]
2000
8000
U [mm]
Sum
A
B
C
D
4000
0.6
6000
4000
0.2
Experiment
Target
-2000
2000
0
-4000
0
200
400
Time [s]
600
0
0.1
0.2
U [mm]
n
0.3
0.4
0
0
0.2
0.4
U
res
0.6
[mm]
0.8
SikaPower 498 adhesive
WWW.HIS.SE/WALT
[email protected]
Page 13
EVALUATION
FRACTURE ENERGY
" "
7
12000
4.5
x 10
4
10000
B
3.5
A
3
6000
C
4000
A
"" [Pa]
J [N/m2]
8000
2.5
C
2
1.5
1
2000
0.5
0
0
0.2
0.4
0.6
Ures [mm]
WWW.HIS.SE/WALT
[email protected]
0.8
0
0
0.2
0.4
0.6
Ures [mm]
0.8
Page 14
EVALUATION
FRACTURE ENVELOPE
16000
CMMB
CMMB
CMMB
TENF
TENF
TENF
TDCB
TDCB
Constrained 2nd order regression
TDCB
Constrained
order regression
regression
Constrained 2nd
4th order
14000
12000
J [N/m 2]
10000
8000
6000
4000
2000
0
-100
-50
WWW.HIS.SE/WALT
[email protected]
0
 [ ]
50
100
Page 15
COMPARISON
COHESIVE MODELS
• Separation based models of initial interest
Two models evaluated:
•
Högberg (2006),
J.L. Högberg. (2006). Unbalanced DCB-specimen. CDCM 2006 - Conference on
Damage in Composite Materials 18th-19th of September 2006 in Stuttgart,
Germany. Online-Proceedings.
Parameter based cohesive law
•
Salomonsson and Andersson (2010).
K. Salomonsson and T. Andersson (2010). Weighted potential methodology for
mixed mode cohesive laws. Proceedings of the MECOM DEL BICENTENARIO, IX
2010, Buenos Aires
Potential based cohesive law
WWW.HIS.SE/WALT
[email protected]
Page 16
COMPARISON
COHESIVE MODELS
15000
10000
Experimenet
Experimenet
2
Högberg,
Högberg, R
R22=0
=0
Högberg, R =0
Salomonsson & Andersson exp22, R22=0.6
Salomonsson & Andersson exp4, R2=0.6
Salomonsson
& Andersson
exp , RR2=0.66
Constrained 2th
order regression,
=0.72
Constrained 2th order regression, R22=0.72
Constrained 2th order regression, R =0.72
2
2=0.74
Constrained
4th order
regression, R
Constrained
Constrained 4th
4th order
order regression,
regression, R
R2=0.74
=0.74
Högberg (2010)
cos
sin
Salomonsson
& Andersson (2010)
1
5000
J
1
1
0
-100
-50
0
50
100
1
WWW.HIS.SE/WALT
[email protected]
Page 17
COMPARISON
CUSTOM, FITTED,
1.2
need to be a continuous
function due to differentiation
1
0.8
0.6
f [-]
)
0.4
0.2
Hard to model the “drop” at
0
-0.2
0
0.5
1
 [rad]
WWW.HIS.SE/WALT
[email protected]
1.5
An optimal
would be
continuous and would pass
all means values
Page 18
1
COMPARISON
CUSTOM, FITTED,
14000
Experimenet
Salomonsson & Andersson exp2, R2=0.6
Salomonsson & Andersson exp4, R2=0.66
12000
2
Salomonsson & Andersson Custom f, R =0.9
Very good
agreement in
fracture energy
10000
8000
6000
Only calibrates
not the entire
evolution of
4000
2000
-80
-60
-40
WWW.HIS.SE/WALT
[email protected]
-20
0
20
40
60
80
,
100
Page 19
COMPARISON
COMPARE ENTIRE J-CURVES
WWW.HIS.SE/WALT
[email protected]
Page 20
COMPARISON
SALOMONSSON AND ANDERSSON
Custom f( )
WWW.HIS.SE/WALT
[email protected]
Page 21
COMPARISON
SALOMONSSON AND ANDERSSON
4000
3500
Black lines:
Experiments
3000
J [N/m2]
2500
Red lines:
From potential
2000
1500
1000
Mode I and Mode II
are inputs
500
=-0
0
0
0.02
0.04
0.06
0.08
Ures [mm]
0.1
0.12
0.14
0.16
Model gives significantly lower stresses than experiments in mixed mode
WWW.HIS.SE/WALT
[email protected]
Page 22
COMPARISON
SALOMONSSON AND ANDERSSON
4000
3500
Black lines:
Experiments
3000
J [N/m2]
2500
Red lines:
From potential
2000
1500
1000
Outsider?
500
Mode I and Mode II
are inputs
 = - 15 
 = + 15 
0
0
0.05
0.1
0.15
0.2
0.25
Ures [mm]
Model gives significantly lower stresses than experiments in mixed mode
WWW.HIS.SE/WALT
[email protected]
Page 23
COMPARISON
SALOMONSSON AND ANDERSSON
4000
3500
Black lines:
Experiments
3000
J [N/m2]
2500
Red lines:
From potential
2000
1500
1000
500
Mode I and Mode II
are inputs
 = - 30 
 = + 30 
0
0
0.05
0.1
0.15
0.2
Ures [mm]
0.25
0.3
0.35
Model gives significantly lower stresses than experiments in mixed mode
WWW.HIS.SE/WALT
[email protected]
Page 24
COMPARISON
SALOMONSSON AND ANDERSSON
6000
5000
Black lines:
Experiments
J [N/m2]
4000
Red lines:
From potential
3000
2000
Mode I and Mode II
are inputs
1000
 = - 45 
 = + 45 
0
0
0.05
0.1
0.15
0.2
0.25
Ures [mm]
0.3
0.35
0.4
0.45
Model gives significantly lower stresses than experiments in mixed mode
WWW.HIS.SE/WALT
[email protected]
Page 25
COMPARISON
SALOMONSSON AND ANDERSSON
10000
9000
Black lines:
Experiments
8000
7000
J [N/m2]
6000
Red lines:
From potential
5000
4000
3000
Mode I and Mode II
are inputs
2000
 = - 60 
1000
 = + 60 
0
0
0.1
0.2
0.3
0.4
Ures [mm]
0.5
0.6
0.7
Model gives significantly lower stresses than experiments in mixed mode
WWW.HIS.SE/WALT
[email protected]
Page 26
COMPARISON
SALOMONSSON AND ANDERSSON
12000
10000
Black lines:
Experiments
J [N/m2]
8000
Red lines:
From potential
6000
4000
Mode I and Mode II
are inputs
2000
 = - 75 
 = + 75 
0
0
0.1
0.2
0.3
0.4
Ures [mm]
0.5
0.6
0.7
Model gives significantly lower stresses than experiments in mixed mode
WWW.HIS.SE/WALT
[email protected]
Page 27
COMPARISON
SALOMONSSON AND ANDERSSON
14000
12000
Black lines:
Experiments
J [N/m2]
10000
8000
Red lines:
From potential
6000
4000
Mode I and Mode II
are inputs
2000
 = 90 
0
0
0.05
0.1
0.15
0.2
0.25
0.3
Ures [mm]
0.35
0.4
0.45
0.5
Model gives significantly lower stresses than experiments in mixed mode
WWW.HIS.SE/WALT
[email protected]
Page 28
EVALUATION
POTENTIAL FROM REGRESSION
,
,
,
,
Constrained, 3D regression analysis, this case 3rd order
WWW.HIS.SE/WALT
[email protected]
Page 29
COMPARISON
POTENTIAL FROM REGRESSION
4000
3500
Black thin lines:
Experiments
3000
J [N/m2]
2500
Black thick line:
Potential from
regression
2000
1500
1000
Red lines:
From potential
500
=-0
0
0
0.05
0.1
0.15
0.2
Ures [mm]
0.25
0.3
0.35
New potential gives non-realistic stresses
WWW.HIS.SE/WALT
[email protected]
Page 30
COMPARISON
POTENTIAL FROM REGRESSION
4000
3500
Black thin lines:
Experiments
3000
J [N/m2]
2500
Black thick line:
Potential from
regression
2000
1500
1000
500
Red lines:
From potential
 = - 15 
 = + 15 
0
0
0.05
0.1
0.15
0.2
Ures [mm]
0.25
0.3
0.35
New potential gives non-realistic stresses
WWW.HIS.SE/WALT
[email protected]
Page 31
COMPARISON
POTENTIAL FROM REGRESSION
4000
3500
Black thin lines:
Experiments
3000
J [N/m2]
2500
Black thick line:
Potential from
regression
2000
1500
1000
500
Red lines:
From potential
 = - 30 
 = + 30 
0
0
0.05
0.1
0.15
0.2
Ures [mm]
0.25
0.3
0.35
New potential gives non-realistic stresses
WWW.HIS.SE/WALT
[email protected]
Page 32
COMPARISON
POTENTIAL FROM REGRESSION
6000
5000
Black thin lines:
Experiments
J [N/m2]
4000
Black thick line:
Potential from
regression
3000
2000
Red lines:
From potential
1000
 = - 45 
 = + 45 
0
0
0.05
0.1
0.15
0.2
0.25
Ures [mm]
0.3
0.35
0.4
0.45
New potential gives non-realistic stresses
WWW.HIS.SE/WALT
[email protected]
Page 33
COMPARISON
POTENTIAL FROM REGRESSION
10000
9000
Black thin lines:
Experiments
8000
7000
J [N/m2]
6000
Black thick line:
Potential from
regression
5000
4000
3000
2000
 = - 60 
1000
Red lines:
From potential
 = + 60 
0
0
0.1
0.2
0.3
0.4
Ures [mm]
0.5
0.6
0.7
New potential gives non-realistic stresses
WWW.HIS.SE/WALT
[email protected]
Page 34
COMPARISON
POTENTIAL FROM REGRESSION
14000
12000
Black thin lines:
Experiments
J [N/m2]
10000
8000
Black thick line:
Potential from
regression
6000
4000
Red lines:
From potential
2000
 = 90 
0
0
0.05
0.1
0.15
0.2
0.25
0.3
Ures [mm]
0.35
0.4
0.45
0.5
New potential gives non-realistic stresses
WWW.HIS.SE/WALT
[email protected]
Page 35
SUMMARY
POTENTIAL FROM REGRESSION
Fracture envelope:
• Prediction by Högberg gives poor fit to the experimental data
Adapted potential function by Salomonsson and Andersson :
• Good agreement in fracture energy for all mode mixes,
• Gives significantly lower stresses
• Significantly exaggerated critical deformation
Potential from regression analysis,
• Mostly a good agreement to the experimental J-curves
• Non-realistic stresses derived form the potential surface
• Critical deformation not defined.
WWW.HIS.SE/WALT
[email protected]
Page 36
FUTURE WORK
IDEAS TO FUTURE WORK
• Chebyshev polynomials?
[Sørensen and Kirkegaard, Eng. Frac. Mech. 73 (2006)]
• FE-simulations to determine the best model
• Other adhesives are to be investigated at Fraunhofer IFAM
WWW.HIS.SE/WALT
[email protected]
Page 37
Proceedings at ESIS TC4 Conference
14th September 2014
THANK YOU
S. Marzi 1), T. Walander 2), O. Hesebeck 1), M. Brede 1)
1)
Fraunhofer IFAM, Germany
2) University of Skövde
Contact e-mail: [email protected]
WWW.HIS.SE/WALT
Page 38