High Speed VCSELs and Optical Interconnects

High Speed VCSELs and Optical Interconnects
Petter Westbergh
Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology,
Göteborg SE-41296, Sweden. E-mail: [email protected]
Optics & Photonics in Sweden 2014
11 - 12 November 2014
Chalmers University of Technology, Göteborg
Outline
•
•
•
•
•
•
Introduction
VCSEL speed limitations
VCSEL design for high speed
Photon lifetime
Performance
Summary
VCSELs probed on wafer
VCSELs arrays
Introduction
Vertical-Cavity Surface-Emitting Laser – VCSEL
Surface emitting semiconductor laser with optical feed-back provided by highly reflective mirrors (DBRs)
•
Small volume (10x10x10 µm3) → low drive current, low power consumption
•
Wafer scale production and testing (100 000 lasers on single 3” wafer possible) → low fabrication cost
•
GaAs-based materials → emission at 850 nm wavelength
Bias current +
data signal
10110010011101
•
DBR (p-type)
oxide aperture
gain medium (MQW)
VCSELs probed on wafer
DBR (n-type)
effective refractive index
index guiding of optical field
SEM image of high speed VCSELs
Introduction
Optical interconnect = short reach optical link for
high capacity data transfer
Datacenters
High performance computing
Optical Thunderbolt
Optical USB 3.0
DataCom
ComputerCom
Consumer
links
rack - rack
Multimode optical fiber
shelve - shelve
VCSEL based optical interconnects
board - board
Polymer optical waveguide
module - module
10-2
10-1
100
101
Distance (m)
102
103
Introduction
•
Datacom is today the most rapidly growing segment of the optical communications market
•
GaAs-based 850 nm wavelength VCSELs are key components
The first of Facebook’s set of three 28,000 m2 data centers in Luleå, Sweden
Existing and emerging data transmission standards
Warehouse-scale datacenters and supercomputers:
~106 optical interconnects (2012) → ~109 optical interconnects (2020)
Requirements for datacom VCSELs:
•
High speed
•
High operating temperature
•
Low power consumption
VCSEL speed limitations
Transmission at high data rates require a large modulation bandwidth
Intrinsic response
(damping limited)
I2
I1
I3
Intrinsic response
+ electrical parasitics
Intrinsic response
+ parasitics + thermal
I1
I1
I2
Gen 2 11um 55 nm etch
K=0.14 ns, γ0=16.8ns-1,
D=4.44current
GHz/sqrt(mA),
increased
fp=17GHz, fr,max = 15 GHz
I3
I1< I2 < I3
typically > 50 GHz
•
The modulation bandwidth is limited by a combination of damping, electrical parasitics, and thermal saturation
•
These parameters can be tuned in the VCSEL design to optimize the modulation bandwidth
VCSEL design for high speed
•
Thick polymer for reduced pad capacitance
•
Multiple oxide layers for reduced capacitance
SEM
•
Graded interfaces and modulation doping in DBRs
•
AlAs in bottom DBR for improved thermal conductivity
•
Active region optimized for rapid bandwidth increase with current
Chalmers 3rd generation high speed 850 nm VCSEL design
4 µm aperture
7 µm aperture
28 GHz
P. Westbergh et al., Electron. Lett. 48, 517 (2012); P. Westbergh et al., IEEE Photon. Techn. Lett. 25, 768 (2013); P. Westbergh et al., SPIE Proc. 8639, 86390X (2013)
Photon lifetime
•
The intrinsic high speed properties of the VCSEL depend strongly on the photon lifetime*
•
The large refractive index step at the semiconductor/air interface has a strong impact on DBR reflectivity
and photon lifetime
•
Nanometer thinning of top layer → reduced mirror reflectivity and photon lifetime
Photon lifetime
0 nm
25 nm
40 nm
55 nm
*Photon lifetime = the lifetime of a photon in the laser resonator before it escapes
P. Westbergh et al., IEEE J. Sel. Top. Quantum Electron. 17, 1603 (2011)
Photon lifetime
τp≈6.4 ps
0 nm
τp≈5.3 ps
25 nm
τp≈3.3 ps
τp≈1.3 ps
40 nm
55 nm
etch depth
0 nm
25 nm
40 nm
55 nm
Modulation bandwidth (GHz)
15.0
17.0
23.0
22.0
•
There exists an optimum photon lifetime for maximum modulation bandwidth
•
> 50% increase in modulation bandwidth achieved by optimizing the reflectivity of the top DBR
P. Westbergh et al., IEEE J. Sel. Top. Quantum Electron. 17, 1603 (2011)
VCSEL-based optical interconnect
- limiting receiver
•
Gen 3, 7 µm aperture diameter, 26 GHz BW
•
40 Gbit/s @ 25°C
Photon lifetime optimized for maximum modulation BW
•
VI-Systems R40-850 photoreceiver (~30 GHz BW, limiting TIA)
•
Error-free transmission: bit-error-rate (BER) < 10-12
Back-to-back
40 Gbit/s @ 85°C
40G
25°C
40G
85°C
47G
25°C
47 Gbit/s @ 25°C
P. Westberg et al., IEEE Photon. Techn. Lett. 25, 768 (2013)
VCSEL-based optical interconnect
- linear receiver
•
Gen 3, 8 µm aperture diameter, 24 GHz BW
•
50 Gbit/s @ 25°C
VCSEL has slightly higher damping (longer photon lifetime) →
flatter response → reduced ringing and timing jitter*
•
New Focus 1484-A-50 photoreceiver (22 GHz 3 dB BW, linear TIA)
Back-to-back
55 Gbit/s @ 25°C
50G
25°C
55G
25°C
57G
25°C
57 Gbit/s @ 25°C
*For more information, see Emanuel Haglund’s Poster ”Optimum Damping Level for High-Speed Large Signal VCSEL Modulation”
P. Westbergh et al. Electron. Lett. 49, 1021 (2013)
VCSEL-based optical interconnect
- equalization
•
26 GHz VCSEL (Gen 3 Chalmers), > 30 GHz photodiode (Sumitomo)
•
Driver and receiver circuits with two tap feed forward equalization (FFE)
•
IBM SiGe BiCMOS 8HP (130 nm)
•
Error-free transmission over MMF up to 71 Gb/s at 25°C and 50 Gb/s at 90°C
Electrical eyes
Optical eyes
Driver
VCSEL
25 - 71 Gb/s
BER vs. Datarate 25-71Gb/s, 7m OM3
25G
32G
40G
50G
60G
64G
68G
71G
-3
40Gb/s
-4
50Gb/s
60Gb/s
log10(BER)
-5
-6
-7
-8
71Gb/s
-9
-10
-11
-12
-13
-12
-10
-8
OMA (dBm)
D.M. Kuchta et al., Proc. OFC, paper Th3C.2 (2014); D.M. Kuchta et al., IEEE Photon. Technol. Lett. (2014)
-6
-4
-2
VCSEL-based optical interconnect
- multi-level modulation
•
Increased capacity through improved spectral efficiency
•
Pulse amplitude modulation (PAM) – low complexity, low power consumption, good receiver sensitivity
•
PAM-4 modulation (4 levels, 2 bits/level)
•
60 Gb/s (30 Gbaud) transmission over a 20 GHz link
25 Gbaud (50 Gbps)
VCSEL
30 Gbaud (60 Gbps)
PAM
signal
generator
Back-to-back
K. Szczerba et al., Electron. Lett. 49, 953 (2013)
MMF
20 GHz
VOA
optical
receiver
50/100 m OM4 fiber
error
analyzer
VCSEL-based optical interconnect
-onboard polymer waveguide interconnect
• Polymer waveguide embedded in backplanes and circuit boards to interconnect boards and modules
• 40 Gb/s NRZ and 56 Gb/s PAM-4 transmission over 1 m polymer waveguide
• Record speed-distance products (40 and 56 Gbps∙m)
25 Gb/s
36 Gb/s
40 Gb/s
56 Gb/s PAM-4
Back-to-back
Waveguide
N. Bamiedakis et al., IEEE J. Lightw. Technol. (2014); N. Bamiedakis et al., Proc. ECOC, paper ? (2014); N. Bamiedakis et al., Proc. OFC (2015)
VCSEL array for MCF links
Multi-core optical fiber (MCF) for increased capacity and bandwidth density
•
240 Gb/s (6×40 Gb/s ) single fiber capacity
10
10
Ch5
Ch 1
Ch 2
Ch 3
Ch 4
Ch 5
Ch 6
8
Ch4
Power (mW)
Ch6
Ch1
6
25 °C
4
25 °C
Ch3
Øox≈8 μm
0
0
2
4
6
8
10 12
Current (mA)
Ch 1
25 Gb/s
40 Gb/s
P. Westbergh et al., IEEE Photon. Technol. Lett. (2014)
2
85 °C
Ch2
40 Gb/s
-3
85 °C
2
25 Gb/s
8
6
4
-2
14
16
18
Ch 2
0
20
85 °C
-4
log(BER)
•
6-channel VCSEL array matched to MCF geometry
Voltage (V)
•
MCF
Single core MMF
85 °C
-5
-6
25 °C
25 °C
-7
-8
-9
-10
-11
Øox≈8 μm
-12
-13
-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1
OMA (dBm)
Ch 3
Ch 4
Ch 5
Ch 6
Summary
•
VCSEL based links for datacom is the fastest growing segment of the optical communications market
•
•
Approaching 30 GHz bandwidth for directly modulated 850 nm VCSELs
Binary modulation:
• 57 Gb/s at 25°C and 40 Gb/s at 85°C unequalized
• 71 Gb/s at 25°C and 50 Gb/s at 90°C equalized
Multi-level modulation
• 60 Gb/s at 25°C
VCSEL arrays
• 6×40 Gb/s = 240 Gb/s over a single MCF
•
•
Summary
•
VCSEL based links for datacom is the fastest growing segment of the optical communications market
•
•
Approaching 30 GHz bandwidth for directly modulated 850 nm VCSELs
Binary modulation:
• 57 Gb/s at 25°C and 40 Gb/s at 85°C unequalized
• 71 Gb/s at 25°C and 50 Gb/s at 90°C equalized
Multi-level modulation
• 60 Gb/s at 25°C
VCSEL arrays
• 6×40 Gb/s = 240 Gb/s over a single MCF
•
•
Thank you!
Acknowledgement
The team at Chalmers
IQE Europe (UK)
Anders Larsson
Johan Gustavsson
Jörgen Bengtsson
Åsa Haglund
Benjamin Kögel
Rashid Safaisini
Erik Haglund
Emanuel Haglund
Tyndall Institute (Ireland)
Krzysztof Szczerba
Magnus Karlsson
Peter Andrekson
Technical University of Berlin (Germany)
Cambridge University (UK)
CNR-IEIIT (Italy)
IBM (USA)
HP Labs (USA)
Ghent University (Belgium)
ULM Photonics (Germany)
Johnny Karout (S2)
Erik Agrell (S2)
IHP (Germany)
OFS (Denmark)
VTT (Finland)
Financing
European Union (FP7 projects VISIT and MERLIN)
Swedish Foundation for Strategic Research (projects LASTECH, MuTOI)