Motivation Introduction Model Results Conclusions Magneto transport in 2D electron gases in semiconductor heterostructures A. Kunold1 1 Area de Física Teórica y Materia Condensada Departamento de Ciencias Básicas UAM-A ICCMSE, Athens-Greece, April, 2014 Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Outline 1 Motivation 2 Introduction 3 Model 4 Results 5 Conclusions Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Outline 1 Motivation 2 Introduction 3 Model 4 Results 5 Conclusions Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Outline 1 Motivation 2 Introduction 3 Model 4 Results 5 Conclusions Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Outline 1 Motivation 2 Introduction 3 Model 4 Results 5 Conclusions Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Outline 1 Motivation 2 Introduction 3 Model 4 Results 5 Conclusions Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Motivation Magneto transport in Hall-like systems give rise to interesting phenomena: MIRO, HIRO, MHIRO, PIRO, Oscillations under a periodic modulation. The method I am presenting today is successful in explaining their most important features. Most of this systems can be modelled by the Hamiltonian H + Vi + Vp where H0 is the Hamiltonian of a charged particle in uniform magnetic and and arbitrarily time dependent electric fields, Vi is an impurity potential and Vp is a periodical modulation. The electric field might be very large in some cases and it can not be treated as a perturbation. MIRO, microwave’s electric field ER ≈ 200V /m HIRO, Hall field EH ≈ 135V /m Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Motivation We would like to use this method to study a periodical modulation to study Bloch Oscillations and THz radiation. Many applications. Bloch Oscillations are Ocillations of electrons in a periodical potential subjected to a constant force (electric field). Bloch Oscillations can not be observed in regular semiconductors because the period of Bloch Oscillations is two small compared to the period of scattering events. Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Hall effect Experimental setup of the Hall effect Quantized Hall resistence Rxy = 1 ~ , j e2 j = 1, 2, . . . Shubinikov-de Haas oscillations Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Hall effect Experimental setup of the Hall effect Quantized Hall resistence Rxy = 1 ~ , j e2 j = 1, 2, . . . Shubinikov-de Haas oscillations Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO Microwave Induced Resistence Oscillations (MIRO) arise in GaAs − AlGaAs heterostructures under microwave radiation. Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO MIRO are oscillations of Rxx as a function of the magnetic field. MIRO can occur in a B weaker than the onset of the Shubinikov-de Haas oscillations (SdH) where Landau levels are not yet resolved. Hall resistence shows classical linear dependence on B. Kunold, Torres M. A. Zudov, et al. Phys. Rev. B 64, 201311(R) (2001) R. G. Mani, et al., Nature 420, 646 (2002) Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO Their period is controlled by the ratio of the microwave frequency to the electron cyclotron frequency = ~ω , ~ωc where ωc = eB/m∗ and m∗ is the effective mass of the conduction band electrons. MIRO are periodical in 1/B Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO Their period is controlled by the ratio of the microwave frequency to the electron cyclotron frequency = ~ω , ~ωc where ωc = eB/m∗ and m∗ is the effective mass of the conduction band electrons. MIRO are periodical in 1/B Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Theoretical models for MIRO Some of the models (Ryzhii,Durst,Vavilov) suggest that the main cause of MIRO is photon-assisted scattering by impurities or disorder. Alternative explanations (Dmitriev) propose that MIRO arise from MW induced distribution function fluctuations. 1 1 V. I. Ryzhii, R. Suris, J Phys. Cond. Matt. 15, 6855 (2003), A. C. Durst, S. Sachdev, N. Read, S. M. Girvin, Phys. Rev. Lett. 91 086803 (2003), J. Shi, X. C. Xie, Phys. Rev. Lett. 91, 086801 (2003), X. L. lei, S. Y. Liu, Phys. Rev. Lett. 91, 226805 (2003), M. G. Vavilov, I. L. Aleiner, Phys. Rev. B 69, 035303 (2004), I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, Phys. Rev. Lett. 91, 226802 (2003); M. Torres, A. Kunold, Phys. Rev. B 71 115313 (2005) I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, D. G. Polyakov, cond-mat/0310668 (2003); cond-mat/0409590 (2004). A. V. Andreev, I. L. Aleiner, A. J. Millis, Phys. Rev. Lett. 91, 056803 (2003) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO A. Kunold, M. Torres, Phys. Rev. B 71, 115313 (2005), phys. stat. sol. (a) 204, 467-471 (2007) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO 6 ω1 /2π = 31GHz ω1 /2π = 47GHz 5 4 ρxx [Ohm] 3 2 1 0 -1 α ≈ 1/5 -2 -3 0 0.02 0.04 0.06 0.08 0.1 A. Kunold, M. Torres, Phys. Rev. B 71, 115313 (2005), phys. stat. sol. (a) 204, 467-471 (2007) B [T] Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO 6 ω1 /2π = 31GHz ω1 /2π = 47GHz 5 4 ρxx [Ohm] 3 2 1 0 -1 α ≈ 1/5 -2 -3 0 2 4 6 8 10 12 A. Kunold, M. Torres, Phys. Rev. B 71, 115313 (2005), phys. stat. sol. (a) 204, 467-471 (2007) ω/ωc Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions HIRO Hall field-induced resistence oscillations (HIRO) are observed under constant longitudinal current. Under constant longitudinal current EH = 1 Ix B ne wb Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions HIRO Hall field-induced resistence oscillations (HIRO) are observed under constant longitudinal current. Under constant longitudinal current EH = 1 Ix B ne wb Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions HIRO The period is controled by ~ωH = ~ωc where ωH = γ (2π/n)1/2 Ix ew Kunold, Torres W. Zhang and H.-S. Chiang and M. A. Zudov and L. N. Pfeiffer and K. W. West, Phys. Rev. B 75 041304(R) (2007) Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions HIRO The period is controled by ~ωH = ~ωc where ωH = γ (2π/n)1/2 Ix ew Kunold, Torres W. Zhang and H.-S. Chiang and M. A. Zudov and L. N. Pfeiffer and K. W. West, Phys. Rev. B 75 041304(R) (2007) Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions HIRO A. Kunold, M.Torres, Physica B 403 (2008) 3803-3808, Physica B 425 (2013) 78?82 Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions HIRO 76 5 4 ǫ = ωH /ωc 3 2 1 rxx [Ω] 2 Jx = 0.8A/m (a) 1.5 0.0 0.5 B [kG] 1.0 0.3 1.5 A. Kunold, M.Torres, Physica B 403 (2008) 3803-3808, Physica B 425 (2013) 78?82 ∆rxx [Ω] Jx = 0.8A/m (b) -0.3 1 2 3 4 5 6 7 8 ǫ = ωH /ωc Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions HIRO A. Kunold, M.Torres, Physica B 403 (2008) 3803-3808, Physica B 425 (2013) 78?82 Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions HIRO B=416G ∆rxx [Ω] 0.5 0 -0.5 -1 (a) 1 2 3 4 5 6 ǫ = ωH /ωc A. Kunold, M.Torres, Physica B 403 (2008) 3803-3808, Physica B 425 (2013) 78?82 B=732G ∆rxx [Ω] 0.5 0 -0.5 -1 (b) 1 2 3 ǫ = ωH /ωc Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO+HIRO=MHIRO MHIRO are observed under the combined effect of microwave and hall field excitations. W. Zhang, M. A. Zudov, L. N. Pfeiffer, and K. W. West Phys. Rev. Lett 98, 106804 (2007) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO+HIRO=MHIRO MHIRO are observed under the combined effect of microwave and hall field excitations. W. Zhang, M. A. Zudov, L. N. Pfeiffer, and K. W. West Phys. Rev. Lett 98, 106804 (2007) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO+Periodical Modulation Another version of MIRO is observed in modulated 2D electron gas Yuan ZQ, Yang CL, Du RR, et al., Phys. Rev. B 74 075313 (2006), Torres M, Kunold A, Journal of PhysicsCondensed Matter 18 40294045 (2006) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions MIRO+Periodical Modulation Another version of MIRO is observed in modulated 2D electron gas Yuan ZQ, Yang CL, Du RR, et al., Phys. Rev. B 74 075313 (2006), Torres M, Kunold A, Journal of PhysicsCondensed Matter 18 40294045 (2006) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Periodical modulation in strong electric fields a = 300nm and we have over a million antiquantum dots. Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Hamiltonian The Hamiltonian for electrons in a 2D modulation potential, perpendicular magnetic field and inplane electric field in the effective mass approximation H = H0 + V where H0 = 1 (p + eA)2 + eE (t) · x ∗ 2m Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Impurity potential and modulation potential The perturbative potential is given by V = Vi + Vm where Vi (r) = ni Z X i d 2q (2π)2 V (q) exp [iq · (r − r i )] is the potential for impurities and 2π 2π Vm (r) = V0 cos x + λ cos y a a is the potential for the modulation. Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Current density The current density is given by Z 1 ˆ ˆ + eA hJi = e dtTr ρˆ (t) p 2m∗ where ρ is the density matrix. It follows the von Neumann equation h i ∂ ˆ0 + V ˆ , ρˆ ˆt ρˆ = H ρˆ = p ∂t h i h i ˆ0 + V ˆ −p ˆ −p ˆt , ρˆ = 0 ˆt , ρˆ = H H i Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Solution Method Von Neumann’s equation ˆ −p ˆt by a series The idea is to "reduce" the Floquet operator H of unitary operators U1 , U2 , ... Un such that ˆ H ˆ −p ˆt U ˆ = U ˆ n ...U ˆ 2U ˆ1 U ˆ † = −p ˆt U Von Neumann’s equation transforms into h i h i ˆ H ˆ −p ˆ† = U ˆ H ˆ −p ˆ †, U ˆ ρˆ (t) U ˆ† ˆt , ρˆ (t) U ˆt U U h i ˆ ρˆ (t) U ˆ† = 0 ˆt , U = p Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Solution Method Density matrix h i ˆ ρˆ (t) U ˆ † is basically the time derivative of U ˆ ρˆ (t) U ˆ † thus ˆt , U p ˆ = ρˆ (0) ˆ ρˆ (t) U ˆ † = Cnt U and ˆ † ρˆ (0) U ˆ ρˆ (t) = U Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Solution Method Thermodynamical averages Now we are ready to calculate the current densities as 1 ˆ ˆ + eA hJi = e dtTr ρˆ (t) p 2m∗ Z 1 † ˆ ˆ ˆ ˆ + eA = e dtTr U ρˆ (0) U p 2m∗ Z 1 ˆ ˆ† ˆ U ˆ = e dtTr ρˆ (0) U p + e A 2m∗ ˆ p ˆ † than U ˆ † ρˆ (0) U. ˆ ˆ U ˆ + eA It is a lot easier to calculate U Z Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Solution Method Unitary transformations The next two transformations separate the Hamiltonian into the x and y parts ˆ 1 = exp (iαxˆ yˆ ) U ˆ 1p ˆ† = p ˆt U ˆt U 1 ˆ 1 xˆ U ˆ † = xˆ U 1 ˆ 1 yˆ U ˆ † = yˆ U 1 ˆ ˆ ˆx U1† = p ˆx − ~αyˆ U1 p † ˆ 1p ˆ = p ˆy U ˆy − ~αxˆ U 1 eB α = 2~ Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Solution Method Unitary transformations ˆ 2 = exp (iβ p ˆx p ˆy ) U † ˆ 2p ˆ = p ˆt U ˆt U 2 ˆ 2 xˆ U ˆ † = xˆ + ~β p ˆy U 2 † ˆ 2 yˆ U ˆ = yˆ + ~β p ˆx U 2 ˆ 2p ˆ† = p ˆx U ˆx U 2 ˆ 2p ˆ† = p ˆy U ˆy U 2 β = − Kunold, Torres 1 eB~ Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Solution Method Unitary transformations The next unitary transformation corresponds to displacements in space, momentum and energy U2 = U2t U2x U2y where i U3t = exp S (t) , ~ i i ˆx , U3x = exp πx (t) xˆ exp λx (t) p ~ ~ i i ˆ ˆ U3y = exp πy (t) y exp λy (t) py , ~ ~ with time dependent transformation parameters S (t), λx (t), πx (t), λy (t) and πy (t) → classical equations an electron. Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Solution Method Unitary transformations This unitary operator yields the following transformation rules U3 xˆ U3† = xˆ + λx (t) , ˆx U3† = p ˆx − πx (t) , U3 p U3 yˆ U3† = yˆ + λy (t) , ˆy U3† = p ˆy − πy (t) , U3 p ˆt U3† = p ˆt + S˙ − λ˙ x πx − λ˙ y πy U3 p ˆx + π˙ y yˆ + λ˙ y p ˆy . +π˙ x xˆ + λ˙ x p It removes linear terms leaving just the Hamiltonian of an oscillator. Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Solution method Unitary Transformations The next transformation removes the quantum oscillator, it is the quantum version of Arnold’s transformation δ 1 2 2 ˆ U4x = exp i ∆xˆ + p 2~ ∆ x and yields the following transformation rules † U4x xˆ U4x † ˆx U4x U4x p † ˆt U4x U4x p 1 ˆx sin δ, p ∆ ˆx cos δ − ∆xˆ sin δ, = p = xˆ cos δ + ˆt = p Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Solution method The last transformation removes the perturbation potential To the second order in time dependent perturbation theory, the time evolution operator is given by i U5 (t) = 1 + ~ Z t ds1 V (s1 ) −∞ 2 Z t Z s1 i + ds2 V (s1 ) V (s2 ) ~ −∞ ∞ Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Current density We plug in the time evolution operator Z 1 † ˆ ˆ + eA hJi = e dtTr U (t) ρ (0) U (t) p 2m∗ hJi = hJic + hJii + hJim hJic : Drude part hJii : Impurity part hJim : Modulation part Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Classical part of the density current The x and y components of the classical part of the density current are " # δ4 nea Jx (Ex , Ey ) = αKx 1 + , α= , 2 2π Kx2 + η 2 s√ " # 2V δ4 2π Jy (Ex , Ey ) = αKy 1 − δ= 2 a m K 2 + η2 y 2πτ e Ey + ωc τ Ex 2πτ e Ex − ωc τ Ey , Ky = , Kx = 2 am 1 + (ωc τ ) am 1 + (ωc τ )2 Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Results We suppose the lateral current " Jy = αKy 1 − # δ4 Ky2 + η 2 2 =0 This gives us a relation between Ex and Ey . This leads to two possible results Ky = 0, & Ky2 + η 2 Kunold, Torres 2 − δ4 = 0 Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Results How do we choose from these possibilities? We define a Lyapunov function to test the stability of the equilibriums Z U= 3 (Jx dKx + Jy dKy ) 50 mT 100 mT 300 mT 2.5 Σxx HWL 60 2 Uy 50 1.5 40 30 1 20 0.5 10 0.05 0 -2 -1.5 -1 -0.5 0 0.5 1 1.5 0.10 0.15 0.20 0.25 2 Ky (T Hz) Kunold, Torres Magneto transport in 2D electron gases... 0.30 BHTL Motivation Introduction Model Results Conclusions Results How do we choose from these possibilities? We define a Lyapunov function to test the stability of the equilibriums Z U= (Jx dKx + Jy dKy ) T =1K 1.2 U 1 0.8 0.6 T =6K 0.4 -1.5 -1 -0.5 0 0.5 1 1.5 Ky (THz) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Results 6 5 4 σxx (Ω) 8V 9V 10V 11V 12V 13V 14V 15V 17V 0.01V 0.1V 1V 2V 3V 4V 5V 6V 7V 3 2 1 0 0.2 0.25 0.3 0.35 0.4 B(T ) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Results 18 16 14 Ex(kV /m) 12 10 8 6 4 2 0 -2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 B(T ) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Conclusions We have studied the magneto transport in a 2D periodical potential under strong bias electric field. Our model takes into account exactly the magnetic and electric field and considers the modulation potential to second order in time dependent perturbation theory. The observed peak structure in the differential conductivity seems to originate in a spontaneous symmetry breaking. Bloch oscillations? Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Acknowledgements CONACyT Departamento de Ciencias Básicas de la UAM-Azcapotzalco. Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Collaborators Wei Pan (SNL) Manuel Torres (IF-UNAM) Francisco López (UAM) Kunold, Torres Magneto transport in 2D electron gases... Motivation Introduction Model Results Conclusions Thank you THANK YOU Kunold, Torres Magneto transport in 2D electron gases...
© Copyright 2024 ExpyDoc